
Decompilation of
Ethereum smart contracts

Thomas E. Hybel

Master’s Thesis, Computer Science
Advisor: Aslan Askarov
Student number: 201303525
June 2018

A B ST R AC T

In this thesis we describe our design and implementation of a decompiler for
Ethereum smart contracts, translating from Ethereum Virtual Machine byte-
code to a high-level language resembling Solidity. At present no practical
decompiler for Ethereum exists, making it infeasible to understand many of
the smart contracts on the blockchain. We attempt to solve this problem by
adapting traditional techniques and methodology from the decompilation of
machine code. Our decompiler works by first translating the bytecode to an
intermediate representation, and then applying various data-flow analyses to
improve the abstraction level of the program. High-level control-flow struc-
ture is also recovered. The program is then converted to an abstract syntax
that the decompiler uses to generate high-level code. We have implemented
our design in the form of a decompiler called DSol. Our results show that
DSol is practical, successfully decompiling and structuring the vast majority
of smart contracts taken from the blockchain.

i

CO N T E N T S

1 introduction 1
1.1 Terminology . 1
1.2 Problem statement . 2
1.3 Applications for an Ethereum decompiler 3
1.4 Structure of the thesis . 4

2 background 6
2.1 Blockchain fundamentals . 6
2.2 Ethereum smart contracts . 7
2.3 Solidity . 8
2.4 The Ethereum Virtual Machine 9

3 overall design 12
3.1 Design considerations . 12
3.2 Design overview . 13
3.3 Front end . 13
3.4 Intermediate representation 14
3.5 Middle end . 15
3.6 Back end . 17

4 decompilation by example 19

5 front end 27
5.1 Parsing . 27
5.2 Intermediate representation 27
5.3 Expressions and variables . 28
5.4 Conversion . 29

6 data-flow analysis 32
6.1 Expression propagation . 32
6.2 Dead-code elimination . 33

7 function identification 35
7.1 External function identification 35
7.2 Internal function identification 36

8 other analyses 40
8.1 Assert reconstruction . 40
8.2 Merging of basic blocks . 41
8.3 Stack flattening . 42
8.4 Successor reduction . 43
8.5 Constant folding . 43

9 control-flow analysis 44
9.1 Structuring loops . 44
9.2 Structuring conditionals . 48
9.3 Duplication of terminating basic blocks 50

ii

CONTENTS

10 back end 51
10.1 Conversion to an abstract syntax tree 51
10.2 Readability improvements . 52
10.3 Code generation . 53
10.4 Low-level concepts that remain in the output 53

11 implementation 55
11.1 Language of implementation 55
11.2 Data structures . 56
11.3 Successors and predecessors 56
11.4 Enumerating the nodes of a function 56
11.5 Alias analysis . 56
11.6 All-paths analyses . 57
11.7 Analysis order and redundancy 58
11.8 Handling of deployment contracts 58
11.9 Known issues and limitations 59

12 evaluation 60
12.1 Evaluated metrics . 60
12.2 Data set . 60
12.3 Experimental setup . 61
12.4 Robustness . 62
12.5 Correctness . 63
12.6 Structuredness . 65
12.7 Compactness . 66

13 discussion 68
13.1 Robustness results . 68
13.2 Correctness results . 69
13.3 Structuredness results . 69
13.4 Compactness results . 71

14 future work 72
14.1 Symbolic execution . 72
14.2 Intermediate representation on SSA form 72
14.3 Alias analysis . 72
14.4 Function signature generation and recognition 72
14.5 Type reconstruction . 73
14.6 Compilable output . 73
14.7 Interactivity . 73
14.8 Further evaluation of readability 74
14.9 Further evaluation of correctness 74

15 related work 75
15.1 Pioneers of decompilation . 75
15.2 Reverse compilation techniques 75
15.3 Static single-assignment form 76
15.4 Hex-Rays . 76
15.5 Phoenix . 77
15.6 Porosity . 77
15.7 Retargetable decompiler . 77
15.8 Type reconstruction . 78
15.9 Evolving exact decompilation 78
15.10 Loop structuring in decompilation 78

iii

CONTENTS

15.11 Function identification . 78
15.12 Analysis of EVM bytecode . 79

16 conclusion 80

references 81

appendix: obtaining and running the software 84

iv

1I N T RO D U C T I O N

Ethereum smart contracts are programs that run on the Ethereum Virtual Ma-
chine (EVM). These smart contracts reside on the Ethereum blockchain in the
form of bytecode. The behavior of many contracts is opaque due to a lack of
source code, rendering analysis and auditing of these contracts infeasible. We
therefore set out to design and implement a decompiler for Ethereum smart
contracts, allowing the automatic translation of EVM bytecode to a readable
high-level language.

This chapter defines the necessary terminology, explains the problem in
more detail, and lists the applications for an Ethereum decompiler.

1.1 terminology

Decompilers

A decompiler is a program that translates programs from a low-level lan-
guage to a high-level language while preserving the semantics of the trans-
lated program [3]. This is illustrated in Figure 1.1. The low-level language
could be machine code or bytecode for a virtual machine.

DecompilerLow-level code High-level code

Figure 1.1: The input and output of a decompiler

A decompiler can ease the process of understanding a program when
source code is unavailable by lowering the amount of code to read, and by
removing machine-specific details from the code.

Blockchain

A blockchain is a tool for achieving global consensus in the absence of a
trusted central authority [15]. It can be thought of as a global, append-only
data structure. A blockchain stores transactions; a transaction contains data
that could, e.g., represent the transfer of currency between two parties.

Cryptographic currencies

A cryptographic currency is a decentralized currency based on cryptography.
A blockchain can be used as a ledger, ensuring a global consensus about the
ownership of currency at any given time. A plethora of cryptographic curren-
cies exist; some examples are Bitcoin and Ethereum.

The Ethereum project

The Ethereum project features a cryptographic currency called Ether, which
is the second biggest cryptographic currency after Bitcoin by market capital-

1

1.2 problem statement

ization [4]. At the time of writing, Ethereum has a market capitalization of
58898 million USD [9].

Ethereum differs from early cryptographic currencies by additionally pro-
viding a platform for so-called smart contracts. An Ethereum smart contract
can be thought of as a program capable of sending and receiving Ether. In
the words of the Ethereum project website [7]:

Ethereum is a decentralized platform that runs smart contracts:
applications that run exactly as programmed without any possi-
bility of downtime, censorship, fraud or third-party interference.

The Ethereum Virtual Machine

Ethereum contracts run on the Ethereum Virtual Machine in the form of EVM
bytecode. Conceptually, the EVM is a global virtual machine that is available
as long as the Ethereum protocol has participants.

Solidity

Solidity is a high-level programming language for Ethereum smart contracts.
It is syntactically reminiscent of JavaScript. A program written in Solidity is
compiled to EVM bytecode before being run on the EVM.

Ethereum smart contracts

A smart contract has external functions that can be invoked as the result of
a transaction, enabling anyone to interact with a contract at any time. When
such a transaction is made, participants in the Ethereum protocol execute the
smart contract bytecode on the Ethereum Virtual Machine to determine the
outcome of the transaction. The outcome could, e.g., be that the smart con-
tract sends money or stores some data in its permanent storage.

Smart contracts have various novel applications. Some examples are a wal-
let with a daily spending limit; a casino offering a roulette application where
tampering with the random number generation is impossible; and decentral-
ized collectibles, such as trading cards.

1.2 problem statement

Many smart contracts on the Ethereum blockchain do not have accompanying
source code, making their behavior opaque to anyone but the author of the
contract.

To solve this problem we propose the design and implementation of a de-
compiler from EVM bytecode to a high-level language reminiscent of Solidity.
The decompiler should produce readable high-level code, making it possible
to understand the behavior of smart contracts even when no source code is
available. Thus our main research question is:

Can EVM bytecode be translated into readable high-level code?

We cannot expect to directly use the existing methodology for bytecode
decompilation; current bytecode decompilers typically exploit the rich infor-
mation present in the decompiled binary file, as is, e.g., the case for Java class
files. Bytecode decompilers also deal with fundamentally different problems,
such as recovering control flow in the presence of exceptions [18].

2

1.3 applications for an ethereum decompiler

We also cannot expect to directly use the techniques from machine-code
decompilation, since EVM bytecode differs in various ways. We must there-
fore understand the techniques and methodology used in modern decompi-
lation research, and then pick and adapt parts as needed. This gives rise to
the following additional research questions, assuming that our main question
can be answered in the positive:

– How can a decompiler for Ethereum smart contracts be designed?
– Which techniques from decompilation research can be applied to

Ethereum smart contracts? Which must be adapted?

EVM bytecode differs from machine code by being stack-based, meaning
that all instructions take their operands from the program stack. This has
two major consequences. First, all jumps are indirect. This makes the recon-
struction of a precise control-flow graph difficult. Second, each data access
is indirect through the stack pointer, complicating data-flow analyses. An-
other difference between EVM bytecode and, e.g., x86 machine code, is that
in the EVM, inter-function control-flow transfers are ordinary jumps; there is
no call nor return instruction, making function identification difficult. All
in all, this gives rise to these additional research questions:

– How can decompilation be achieved in the absence of precise control-
flow information?

– How can existing data-flow analyses for decompilation be adapted to
handle frequent indirect data accesses?

– How can functions be identified in the absence of call and return in-
structions?

We address these issues by using or adapting techniques from the existing
research literature on decompilation. When no information exists, we devise
our own analyses. After arriving at and describing a design that solves the
mentioned problems, we evaluate its practicality by implementing a decom-
piler that we call DSol.1 We evaluate our decompiler through experiments
that aim to quantify its robustness, correctness, and output readability.

1.3 applications for an ethereum decompiler

A decompiler for Ethereum has numerous applications:

1. Recovering lost source code or contract ABI.

A decompiler eases the recovery of lost source code. It also enables recovery
of the application binary interface (ABI) of a contract. Without the ABI, in-
teracting with the contract is impossible. This could, e.g., allow withdrawing
the funds from a wallet whose owner lost the ABI.

2. Understanding contracts without public source code

A decompiler makes it feasible to understand contracts even when public
source code is unavailable. This ability enables the classification of every
contract on the Ethereum network, rather than only the ones with available
source code. For example, a decompiler can be helpful in answering ques-
tions such as “how many of all contracts are wallets?” and “how diverse are
contracts on the Ethereum network?”

1 DSol is pronounced as “diesel”: /'di:z(ə)l/

3

1.4 structure of the thesis

3. Enabling vulnerability discovery

Ethereum contracts can suffer from various types of vulnerabilities [1, 5]. A
decompiler makes it feasible to understand and search for vulnerabilities in
contracts without public source code.

Leaving unethical applications aside, users may still want to audit a smart
contract that is not their own in order to minimize the risk of making a bad
investment. This argument applies both to individual contracts and to the
Ethereum network as a whole, since some smart contracts hold a large per-
centage of all Ether.2 If a high-value contract has a vulnerability, it could
affect the Ethereum economy as a whole.

In the long term, the public availability of a decompiler may increase the
security of the Ethereum network as a whole by making security through
obscurity unappealing.

4. Enabling backdoor discovery

The Underhanded Solidity Coding Contest [21] has recently shown a variety
of techniques for placing backdoors into contracts, allowing the contract au-
thor to steal the funds of investors. Several of these backdoors rely on syntacti-
cal techniques that would immediately become obvious from the decompiler
output.

Additionally, the compiler could insert backdoors into contracts due to
having been tampered with. This tampering could occur anywhere along
the path from compiler developer, through software repositories, to the pro-
grammer’s machine. A decompiler allows the discovery of such an issue.

5. Discovering compiler bugs.

At present, users largely have to trust that the compiler generates correct out-
put, since verifying the low-level code is excessively time-consuming and re-
quires skills that high-level programmers may not have. A decompiler en-
ables users and compiler developers alike to verify the contract bytecode.

6. Understanding how details of smart contracts are implemented at the
EVM level.

A decompiler provides a convenient way for users to investigate how high-
level language features are implemented at the EVM level.

7. Enabling program analysis at a higher level of abstraction

Some program analyses may only be feasible on a higher-level representation
of the program, whether for efficiency reasons or because the decompiler out-
put has more structure than the bytecode.

1.4 structure of the thesis

The following chapters cover the theoretical and design aspects of our decom-
piler. We first provide necessary background information. This is followed
by an overview of our design. We then provide an intuition for the process of
decompilation through an example. After the overview we describe the the-
ory behind each phase in detail.

2 For example, the wealthiest contract at the time of writing holds 1% of all Ether, the equivalent
of USD 603 million.

4

1.4 structure of the thesis

After the theory we describe our implementation. This is followed by an
evaluation based on a number of experiments, along with a discussion of our
results.

The final part of our thesis gives an overview of the related work that we
have based our design upon. It also enumerates various tasks that we have
left as future work.

5

2BAC KG RO U N D

2.1 blockchain fundamentals

A blockchain is a protocol for achieving distributed consensus in the absence
of a trusted third party [15]. The basic unit in a blockchain is the transaction.
A block contains a number of transactions, each with some amount of data. A
blockchain can thus be thought of as a global append-only log of transactions
[36]. A blockchain is so named because it stores transactions in blocks that
are concatenated to form one long chain.

Blockchains are relevant to the present thesis because they allow the im-
plementation of cryptographic currencies. A cryptographic currency, or cryp-
tocurrency for short, is a decentralized virtual currency based on public-key
cryptography [36, 15]. In a cryptocurrency, the blockchain functions as a
global ledger that keeps track of how much currency belongs to whom at
a given time. Currency can be transferred to another party by signing a trans-
fer with one’s private key.

The primary obstacle in realizing a cryptographic currency is the so-called
double spending problem, where a malicious actor spends their money twice.
To illustrate the double spending problem, imagine three actors: Alice, Bob,
and Eve. Eve signs a transaction saying that she transfers all her money to
Alice. After receiving the paid-for goods from Alice, Eve then signs another
transaction saying that she sends all her money to Bob, receiving more goods
in return. This is the double spending problem.

The issue in this example is that transactions are not global; Bob is un-
aware of the transaction from Eve to Alice. A blockchain solves this problem
by functioning as a global distributed ledger: Eve appends her first transac-
tion to the chain, and now all parties agree that the money belongs to Alice.

In a blockchain, each block 𝐵𝑖 holds a number of transactions. The block
𝐵𝑖 also holds a cryptographic hash of the previous block 𝐵𝑖−1 to which it was
appended. This ensures that if 𝐵𝑖−1 is ever replaced with some other block
𝐵′

𝑖−1, then all blocks thereafter will be invalidated since the hash will no longer
match. This ensures that the blocks conceptually form a chain.

To create a valid block, a cryptographic proof of work must be solved. As
an example of a proof of work, consider the problem of appending some num-
ber 𝑛 to the block such that the SHA-256 hash of the block has 𝑘 leading zeros.
Such a proof of work ensures that creating a valid block is computationally ex-
pensive. Ethereum uses a much more complex proof of work called Ethash1

[23], although the principle remains the same.
Blocks with valid proofs of work are computed by so-called miners; a

miner refers to a machine (or sometimes the owner of said machine) that col-
lects transactions from users, concatenates them into a block, and attempts
to solve the proof of work for the block. Miners are connected in a peer-to-
peer network, with node discovery inspired by the Kademlia protocol [37, 44].
Computing a valid proof of work is called mining the block. While mining a

1 Ethash is designed to prevent miners from using application-specific integrated circuits (ASICs)
as specialized hardware. This ensures that mining remains profitable for individuals, with the
result of increasing the diversity of the Ethereum network. Ethash accomplishes this by being
memory-bound rather than CPU-bound.

6

2.2 ethereum smart contracts

block is costly in terms of CPU power, the miner that succeeds is compensated
by being awarded some amount of currency.2 Miners are thus incentivized
to partake in the protocol, keeping the system running.

If two valid blocks are mined, both of which are valid successors to a pre-
vious block, then the chain is said to fork, splitting into two chains. In that
case, only one of the two chains is valid, namely the one that is “longest”,
meaning that it required the most computing power to create.

Returning to the double spending problem, the only way Eve can spend
her money twice is if she goes back to the block 𝐵𝑖−1 where she still held her
money, and creates a new successor block 𝐵′

𝑖 in which her money goes to Bob
instead of Alice – that is, by forking the chain. For the new chain to become
the globally accepted one, Eve must make her new chain longer than the old
one; but if Eve holds less computing power than the rest of the miners, the
original chain continues to grow faster than Eve’s, making double spending
impossible. An important security assumption is therefore that miners with
a majority of the computing power do not collude.

2.2 ethereum smart contracts

Ethereum is one example of a cryptographic currency. It is different from
traditional cryptographic currencies because it includes the concept of smart
contracts.

An Ethereum smart contract is a program for the Ethereum Virtual Ma-
chine. A smart contract is capable of sending and receiving currency. A smart
contract has callable functions; external functions can be invoked by anyone
at any time by creating a transaction to the contract address.

Ethereum smart contracts are represented as bytecode for the Ethereum
Virtual Machine. The contract bytecode is stored on the blockchain, provid-
ing strong integrity guarantees.3 The bytecode for a contract can never be
changed after contract creation.4

When a transaction to a smart contract is included in a block, every miner
trying to mine the block executes the contract bytecode on the Ethereum Vir-
tual Machine to determine the outcome of the transaction. If a miner does not
follow the specification of the EVM to the letter, then other miners will notice
this fact and declare the mined block void, which means that the miner does
not receive any compensation. The result is that the EVM can be regarded as
a trusted computing platform, at least as long as the security assumptions on
the Ethereum protocol hold.

The fact that each miner runs each transaction on their machine has secu-
rity implications. First, it means that the EVM must provide isolation from
the rest of the system. Additionally, it means that denial-of-service attacks are
possible. For example, if a transaction to a contract results in an infinite loop,
the miner will spend computing power futilely. To address this problem, the
initiator of a transaction pays the miners for every computational step. The

2 This happens without any third party awarding the compensation; instead, the successful miner
is allowed to insert a transaction of currency to themselves into the block. This is a cause of
inflation.

3 Actually the bytecode itself is not stored on-chain for space efficiency reasons. Instead, a hash
of the bytecode is stored on the blockchain, while the bytecode itself is stored in a peer-to-peer
network called Swarm.

4 This has the consequence that if a contract vulnerability, contract bug, or compiler bug is discov-
ered after contract deployment, there is no way to fix it! Therefore, in practice, smart contracts
tend to contain a “backdoor” that lets the owner move its money to a different account, so that
a fixed version of the contract can be redeployed. Unfortunately this removes one of the main
features of a smart contract, namely that only the code needs to be trusted, not its owner.

7

2.3 solidity

result is that a denial-of-service attack is prohibitively expensive. In slightly
more detail, the initiator of a transaction pays for a pool of so-called gas before
the transaction is processed. Every EVM instruction has an associated gas
cost, which is subtracted from the pool of gas as the miner processes the in-
struction. If the pool runs dry, all effects of the transaction are reverted. Either
way, the amount paid for this gas is transferred to the miner as an additional
incentive for mining.5

Smart contracts are useful for much the same reasons as a traditional con-
tract is: it provides a binding, enforceable agreement between parties, e.g.,
regarding matters of currency. Unlike a normal contract, a smart contract
is written in a programming language and is cryptographically enforced. An
example of a smart contract is a wallet with a daily spending limit. Another
example is a casino offering a roulette application; since the code is public,
users can verify for themselves that random number generation is fair.6

Ethereum smart contracts are typically written in a high-level language
and compiled to EVM bytecode. One popular smart contract programming
language is Solidity.

2.3 solidity

Solidity is a high-level smart contract programming language. Syntactically
it is reminiscent of JavaScript. Solidity also inherits its scoping rules from
JavaScript, such that variable declarations are hoisted to the beginning of the
function [47]. Unlike JavaScript, however, Solidity is statically typed.

A Solidity smart contract has a number of functions, instance variables,
and a constructor. Functions may be externally invokable, in which case any-
one can do so as the result of a transaction. An example of a smart contract
written in Solidity is given in Figure 2.1.

1 contract SmallExample {
2

3 function myfunc (uint x) external returns (uint) {
4 uint result = 0;
5

6 if ((x % 2) == 1) {
7 result += 1;
8 }
9 else {

10 result += 2;
11 }
12

13 for (uint i = 0; i < x; i++) {
14 result += 2;
15 }
16

17 return result/3 + 5;
18 }
19 }

Figure 2.1: An example smart contract written in Solidity
5 Since miners are free to choose which transactions to include in the block they are attempting

to mine, this provides a way to pay extra to have a transaction processed sooner: by providing
additional gas for a transaction, miners will presumably preferentially include that transaction
in their block.

6 However, since the Ethereum Virtual Machine is deterministic, secure random number genera-
tion is notoriously difficult.

8

2.4 the ethereum virtual machine

Functions in Solidity can potentially have multiple return values. Solid-
ity also supports various complex data types, including strings, arrays, map-
pings, and structs.

An Ethereum smart contract has an area of memory called storage; this
is where its instance variables reside. Data in storage persists across transac-
tions. This contract storage can be thought of as residing on the blockchain,
in the sense that it is integrity-protected. However, data in storage is not ex-
plicitly represented on the blockchain – rather, the transactions that led to
the program code modifying storage are stored on the chain. To compute
a current view of contract storage, miners must replay all past transactions
pertaining to the contract.

2.4 the ethereum virtual machine

Ethereum smart contracts are represented on the blockchain in the form of
EVM bytecode. The EVM is a stack-based virtual machine: the operands of
instructions are popped from the stack, and the result of a computation is
pushed onto the stack as a result of executing an instruction. The EVM is
big-endian with a large word size of 256 bits. This is, e.g., convenient for
computations on large values such as SHA-3 hashes and account addresses,
but inefficient for computations on small values.

Instruction set

The EVM instruction set is similar to other stack-based VMs, such as the Java
Virtual Machine, with most instructions dedicated to performing arithmetic
and managing the program stack. An example snippet of EVM instructions
is provided in Figure 2.2. The example code jumps to address 0x44 if it holds
that (1+2)*3 == 9.

1 PUSH 0x1
2 PUSH 0x2
3 ADD
4 PUSH 0x3
5 MUL
6 PUSH 0x9
7 EQ
8 PUSH 0x44
9 JUMPI

Figure 2.2: An example snippet of EVM instructions

The instructions for managing the program stack are POP, PUSH, SWAP and
DUP.7 There is a variety of arithmetic instructions, such as ADD, MUL and XOR.

Control-flow transfers happen through the JUMP instruction. This includes
function calls and returns – there is no separate instruction to call a function,
nor to return from one. Conditional jumps occur through the JUMPI (“jump
if not zero”) instruction. The JUMP and JUMPI instructions take their destina-
tion argument on the program stack, which means that every jump is indirect.

7 The latter three are actually classes of instructions; EVM has various PUSH instructions depending
on the data width, such as PUSH1, PUSH2, etc. up to PUSH32. Similarly, there are various SWAP
instructions depending on which stack word is swapped; thus there is a SWAP1 instruction, a
SWAP2 instruction, and so on. We have grouped these for simplicity. In our implementation,
the class of DUP instructions is treated as a single instruction with an operand, which is the stack
offset to duplicate. The other instruction classes are treated similarly.

9

2.4 the ethereum virtual machine

The consequence is that exact control-flow information is not available except
through extensive analysis. Jumps may only target destinations marked with
a JUMPDEST instruction in the code; jumps elsewhere cause the transaction to
be reverted.

The EVM also has a number of instructions specific to smart contracts.
To give some examples: the BALANCE instruction can be used to retrieve the
current balance of an account. The CREATE instruction creates a new smart
contract. The confusingly named CALL instruction invokes code on another
contract – it does not call a function on the current contract. Similarly con-
fusing is the RETURN instruction; it does not return from a function call, but
rather halts execution altogether, marking an area of memory as the result of
the transaction.

Memory architecture

The EVM has a complicated memory architecture, with a large number of
dedicated memory regions, including regions for the program stack, memory,
storage, call data, program code, and return data. An explanation of each
memory region is given in Figure 2.3.

Name Description Instructions

Stack A region which holds instruction operands
and results. Modified when processing most
instructions.

PUSH, POP,
SWAP, DUP

Memory A byte-addressed region that is used as a
scratch space. It is erased after each transaction.
Cheaper to use than storage.

MLOAD, MSTORE,
MSTORE8

Storage A word-addressed region that holds the in-
stance variables of a contract. Persists across
transactions.

SLOAD, SSTORE

Code A read-only region holding the program code. CODESIZE,
CODECOPY

Call data A read-only region holding the packed argu-
ments of an external function call.

CALLDATASIZE,
CALLDATALOAD

Figure 2.3: The EVM memory regions

Deployment bytecode

When a smart contract is created, its bytecode is not put directly on the block-
chain. Instead, each contract goes through a deployment process. What is
placed on the blockchain is so-called deployment bytecode. The miners exe-
cute this deployment bytecode as a result of the contract creation transaction.
When the deployment bytecode halts, it returns the actual contract bytecode
that is henceforth used to process any transactions. If a contract has a con-
structor, the bytecode for the constructor is included in the deployment con-
tract. Thus the work of the constructor is performed while executing the de-
ployment bytecode, ensuring that the constructor is run during contract cre-
ation and never thereafter.

10

2.4 the ethereum virtual machine

This has consequences for decompilation: it means that the contract con-
structor must be recovered from the deployment code, as it no longer exists
once the contract is deployed. It also means that the deployed bytecode must
be extracted from the deployment bytecode as part of the decompilation pro-
cess.

11

3OV E R A L L D E S I G N

This chapter gives an overview of the design of our decompiler. We provide
an intuition for what the various stages of the decompiler do, leaving the
details for later chapters. We also explain the motivations behind our design
decisions.

3.1 design considerations

Correctness

We consider the correctness of our decompiler crucial. That is, the output
must be semantically equivalent to the input bytecode. One of the main uses
of a decompiler is to ease the understanding of programs. If this understand-
ing is wrong, however, then the utility is lost, and the analyst can no longer
trust the tool. We therefore consider correctness one of the top priorities in
our design.

For our design, this means that our analyses must always make the safe
choice when there is doubt. It also means that we must minimize the use of
heuristics that only produce correct results some of the time. In addition, our
implementation should check as many invariants as possible to increase the
chances of catching incorrect output. We prefer to produce no output at all
over producing incorrect output.

Output compilability

It is preferable that a decompiler produces output that is syntactically correct
and complete, so that it can be compiled. However the main intended use
of our decompiler is to let humans, not the compiler, understand programs.
Demanding that the output be compilable also makes our task significantly
more difficult, as every low-level detail must then be removed. Therefore we
choose to not make output compilability a priority.

Performance

Our decompiler should be useful in practice. This means that it should have a
practical running time for all realistic contracts; that is, the running time on an
average contract should be on the order of minutes, not hours or days. As long
as this requirement is satisfied, we do not put much additional value in faster
running times; performance is therefore of low priority in our design. As a
consequence, we prefer algorithms and techniques that are easy to implement
over ones that are highly performant.

Readability

Output readability is important because it facilitates the main intended use
of our decompiler, namely understanding programs. However readability
should never come at the cost of correctness.

12

3.2 design overview

Modularity

Our design is made with a single purpose in mind: to translate from EVM
bytecode to a Solidity-like language. To facilitate achieving this, we have
deliberately not made modularity a priority. In other words, our design is
shaped around the peculiarities of EVM bytecode and the Solidity language.
Our design may thus require severe changes to support other architectures.

Supported inputs

We assume that the input for our decompiler was produced by a compiler. It is
possible to write a contract manually using EVM assembly. It is also possible
to obfuscate bytecode. We do not make it a priority to handle such inputs.

3.2 design overview

For our design, we use the ideas of Cifuentes [3] as our starting point. We
elaborate on the work of Cifuentes in Section 15.2. For now, this means that
our design is divided into three stages: a front end, a middle end, and a back
end. This is illustrated in Figure 3.1.

Front end

EVM bytecode

Middle end

Back end

Solidity code

IR

Transformed IR,
Structuring information

Figure 3.1: Overall design of the decompiler.

The front end converts the input bytecode to an intermediate represen-
tation. The middle end recovers high-level concepts through data-flow and
control-flow analyses. The back end produces high-level code.

3.3 front end

The front end takes EVM bytecode as its input. It transforms the bytecode into
an intermediate representation (IR) suitable for the middle end to work upon.

The front-end has two stages. First is a parsing stage that splits the EVM
bytecode into separate EVM instructions and divides these into basic blocks.
Then comes a conversion phase that converts the EVM instructions to an in-
termediate representation. This is illustrated in Figure 3.2.

13

3.4 intermediate representation

Parser

Converter

EVM instructions

EVM bytecode

Intermediate Representation

Figure 3.2: Design of the front end.

3.4 intermediate representation

In our final design, we have chosen to represent each function in the program
as a control-flow graph (CFG) that consists of basic blocks interconnected by
edges. Each basic block contains a sequence of statements, where the last
statement transfers control flow to another basic block or terminates the pro-
gram. These statements have optional arguments and results, all of which are
expressions.

The edges in the CFG represent possible flows of control. When an ex-
act successor cannot be determined, e.g., in case of an indirect jump, then
we use a sound over-approximation of these possible flows. In other words,
basic blocks with indirect jumps have edges leading to every basic block. The
precision of the CFG is later increased by various analyses in the middle end.

We chose this intermediate representation, with basic blocks connected in
a CFG, because it is a common representation in decompiler design (see, e.g.,
Cifuentes [3]; van Emmerik [22]; and Yakdan et al. [25]).

At one point we experimented with changing our intermediate representa-
tion to a more complex one, with various node types representing high-level
language constructs. That is, there was a Sequence of statements, a Loop node,
a IfElse node, and an IndirectJump node. The middle end iterates some
data-flow analyses to a fixed point; we hoped that our inclusion of a Loop
node would allow the inclusion of control-flow analyses into this fixed-point
computation, resulting in more readable output.

Unfortunately this representation turned out to be cumbersome; every
one of our analyses had to case over and explicitly handle every node type,
which complicated our analyses and made their implementation error-prone.
We therefore abandoned that intermediate representation and reverted to the
simpler one with only basic blocks.

Statements

The basic blocks of our intermediate representation contain statements which
operate upon expressions. Our choice of statement types largely followed
from the input and output languages. For example, Solidity has an assert
statement, so a statement of this type is natural to include in our representa-
tion.

The most important types of statements are assign, jump, jcond, and vm-
call. The assign statement assigns an arbitrarily complex expression to a
variable. An example assign statement is:

14

3.5 middle end

1 var0 := (var0 + 2)

The jump statement is self-explanatory, while jcond is a jump that is condi-
tional based on an expression. The vmcall instruction invokes EVM-specific
functionality, e.g., causing the machine to halt. Later on, analyses in the mid-
dle end create statements with types that do not exist in EVM bytecode, such
as call, return and assert.

We considered using static single-assignment (SSA) form in our interme-
diate representation. SSA form is a property of an intermediate representa-
tion. In SSA form, every variable in the program is assigned to exactly once
[29]. This simplifies certain data-flow analyses because every use of a vari-
able is associated with a unique definition. For these and other reasons, van
Emmerik [22] argues that SSA form is advantageous in machine-code decom-
pilation. However, converting to and maintaining this form introduces addi-
tional work. Additionally, indirect memory operations, which are common
in EVM bytecode, complicate the conversion and maintenance of SSA form
[33]. We therefore decided not to use SSA form.

Expressions

The statements of our intermediate representation operate upon expressions.
The types of these expressions follow from the instructions and memory ar-
chitecture of the EVM. For example, EVM bytecode has an ADD instruction, so
our representation needs a binary operator representing addition. As another
example, the EVM has a memory area called storage. Our representation
therefore has a storage variable type.

The types of expressions are divided into literals, unary- and binary op-
erators, and variables. Some example expressions are provided in Figure 3.3.

Example expressions:
1 1
2 1 + 2
3 ~(2 ** (256 - 32))
4 var0
5 mem[var0:(stack[sp] - var0)]

Example variables:
1 var0
2 globalvar1
3 stack[sp+1]
4 mem[0x20:0x40]
5 storage(0x0)

Figure 3.3: Examples of expressions and variables

After the front end has converted the input bytecode to our intermediate
representation, the program is passed on to the middle end.

3.5 middle end

The purpose of the middle end is to remove low-level details from the code,
transforming it to a higher level of abstraction that is more suitable for gener-
ating high-level code.

The analyses included in the middle end are chosen based on the low-level
details that must be removed and the high-level details that must be restored
to produce readable high-level code. For example, one of these analyses is
expression propagation, which restores complex expressions from the simple
ones that the EVM can compute. As a result of expression propagation, some
definitions become unnecessary. We therefore include dead-code elimination

15

3.5 middle end

in our list of analyses. The middle end must also recover functions, which do
not exist anymore after compilation to EVM bytecode.

One central issue when decompiling EVM bytecode is that a precise control-
flow graph is not immediately available, since all jumps are initially indirect.
This leads to the following problem. Our data-flow analyses can improve
the precision of the CFG, but these analyses are in turn more effective with a
more precise CFG. This paradoxical situation is an inherent part of analyzing
binary programs with indirect jumps [40], but it is a particularly big problem
for EVM bytecode since every jump is indirect.

To resolve this problem, our decompiler repeatedly applies the analyses
until reaching a fixed point. This gradually increases the precision of the CFG.
To the best of our knowledge, this is a deviation from previous decompiler de-
signs, which apply each analysis in the middle end only once. Note that the
benefits of such a fixed-point iteration may be higher for decompiling EVM
bytecode than for traditional machine code, since the former has greater in-
herent imprecision.

Once a fixed point is reached, a control-flow analysis phase is run once, re-
covering loops and conditionals. We do not include the control-flow analysis
in the fixed-point computation because when we did so, it complicated our
intermediate representation and the implementation of every other analysis,
as described in Section 3.4.

Our design, based on these considerations, is illustrated in Figure 3.4.

Expression propagation

Dead-code elimination

Function identification

Other analyses

Loop structuring

Conditional structuring

IR

Transformed IR,
Structuring information

Transformed IR

Figure 3.4: Design of the middle end.

16

3.6 back end

The following chapters describe each analysis in more detail. For now we
provide a brief overview of what each analysis accomplishes.

The data-flow analyses in the middle end include expression propagation
and dead-code elimination. In expression propagation, the definition of a
variable is propagated to its point of use whenever this is safe. This turns the
simple sequential operations of EVM bytecode into higher-level expressions.
As a result of such propagations, the initial definition may become unused.
Dead-code elimination removes such definitions.

Function identification involves splitting code off into separate functions
when it is safe to do so. Since EVM has no call instruction, there is no trivial
way to discover functions; therefore we initially treat all of the code as one
large function starting at address 0x0. This includes the loader code and all
other code as well. It is the task of the function identification module to detect
jumps that are actually function calls. When a function is identified, its code
is split off for separate analysis.

The control-flow analyses include structuring of loops and structuring
of conditionals. In loop structuring, loops and their contained basic blocks
are discovered. Structuring conditionals involves finding the so-called fol-
low node of a conditional jump; the follow node is the point where the two
branches meet. These analyses makes it possible to generate more readable
high-level code that contains no goto statements.

3.6 back end

The back end receives the transformed intermediate representation from the
fixed-point iteration in the middle end, along with structuring information
from the control-flow analyses. The purpose of the back end is to generate
high-level code in a Solidity-like programming language.

The back end has three stages: abstract syntax tree (AST) conversion, read-
ability improvements, and code generation. The design of the back end is
illustrated in Figure 3.5.

AST conversion

Readability improvements

Code generation

IR, structuring information

High-level code

Figure 3.5: Design of the back end.

In the first stage of the back end, the intermediate representation of each
function is transformed into an abstract syntax tree. The structuring informa-
tion is used to accomplish this. Node types include IfElse, IndirectJump,
Loop, and Sequence.

17

3.6 back end

In the second stage of the back end, various passes are made over the
abstract syntax, with the goal of increasing the readability of the final code.
These passes include variable naming, identifying array accesses, identifying
casts to smaller types, and other minor transformations.

In the third and final stage, a pass is made over each AST to generate the
code for a function. This involves recursively visiting each node in the func-
tion and generating the appropriate code. The process is rather straightfor-
ward once the program is in AST form.

Occasionally the middle end may be unable to remove all the low-level de-
tails from the intermediate representation. For instance, some indirect jumps
may remain due to expression propagation or function identification failing.
In that case code generation produces goto statements that do not exist in So-
lidity. This means that the code is not compilable without manual changes.
In effect, we are generating code in a Solidity-like language; the output is only
valid Solidity in the ideal case.

18

4D E CO M P I L AT I O N BY E X A M P L E

To give an intuition for what each stage of the decompiler does, this section
illustrates the inputs and outputs of each phase of our decompiler as it pro-
cesses a small example contract.

Solidity source code

Our running example is based on the Solidity smart contract called SmallEx-
ample. It has the following source code:

1 contract SmallExample {
2

3 function myfunc (uint x) external returns (uint) {
4 uint result = 0;
5

6 if ((x % 2) == 1) {
7 result += 1;
8 }
9 else {

10 result += 2;
11 }
12

13 for (uint i = 0; i < x; i++) {
14 result += 2;
15 }
16

17 return result/3 + 5;
18 }
19 }

The smart contract has a single externally callable function, myfunc, which
performs some arithmetic computations using an if statement and a for loop
for illustration purposes.

Bytecode

Compiling the smart contract gives the following bytecode, represented as a
hexadecimal-encoded string:1

1 606060405260043610603e5763ffffffff7c010000000000000000000000
2 0000000000000000000000000000000000600035041663acc9d5d6811460
3 43575b600080fd5b3415604d57600080fd5b60566004356068565b604051
4 90815260200160405180910390f35b600080806002840660011415608157
5 6001820191506088565b6002820191505b5060005b8381101560a1576002
6 9190910190600101608c565b5060039004600501929150505600a165627a
7 7a723058208463eb00770034296b7ef4643451d56dceb2323d346540025e
8 4d14069220c6880029

This bytecode is given as input to the front end of the decompiler, which has
two stages: parsing and conversion to an intermediate representation.

1 The compilation actually produces deployment bytecode that, when executed, produces the shown
bytecode; the details are explained later.

19

decompilation by example

EVM instructions

After parsing, the program is represented as basic blocks containing EVM
instructions:

0x0:
PUSH 0x60
PUSH 0x40
MSTORE
PUSH 0x4
CALLDATASIZE
LT
PUSH 0x3e
JUMPI

0xc:
PUSH 0xffffffff
PUSH 0x100..000
PUSH 0x0
CALLDATALOAD
DIV
AND
PUSH 0xacc9d5d6
DUP 0x2
EQ
PUSH 0x43
JUMPI

0x3e:
JUMPDEST
PUSH 0x0
DUP 0x1
REVERT

0x43:
JUMPDEST
CALLVALUE
ISZERO
PUSH 0x4d
JUMPI

0x49:
PUSH 0x0
DUP 0x1
REVERT

0x4d:
JUMPDEST
PUSH 0x56
PUSH 0x4
CALLDATALOAD
PUSH 0x68
JUMP

0x56:
JUMPDEST
PUSH 0x40
MLOAD
SWAP 0x1
DUP 0x2
MSTORE
PUSH 0x20
ADD
PUSH 0x40
MLOAD
DUP 0x1
SWAP 0x2
SUB
SWAP 0x1
RETURN

0x68:
JUMPDEST
PUSH 0x0
DUP 0x1

DUP 0x1
PUSH 0x2
DUP 0x5
MOD
PUSH 0x1
EQ
ISZERO
PUSH 0x81
JUMPI

0x78:
PUSH 0x1
DUP 0x3
ADD
SWAP 0x2
POP
PUSH 0x88
JUMP

0x81:
JUMPDEST
PUSH 0x2
DUP 0x3
ADD
SWAP 0x2
POP

0x88:
JUMPDEST
POP
PUSH 0x0

0x8c:
JUMPDEST
DUP 0x4

DUP 0x2
LT
ISZERO
PUSH 0xa1
JUMPI

0x94:
PUSH 0x2
SWAP 0x2
SWAP 0x1
SWAP 0x2
ADD
SWAP 0x1
PUSH 0x1
ADD
PUSH 0x8c
JUMP

0xa1:
JUMPDEST
POP
PUSH 0x3
SWAP 0x1
DIV
PUSH 0x5
ADD
SWAP 0x3
SWAP 0x2
POP
POP
JUMP

0xaf:
STOP

Address 0x0 contains loader code, which is responsible for dispatching to
the called function. For our example, the loader code is unneeded because
there is only a single external function, but the compiler produces it nonethe-
less.

The loader code checks if the first four bytes of the input are 0xacc9d5d6,
which is a hash of the myfunc function signature. If so, the loader code calls
myfunc. Worth noting is that the basic block at address 0xa1 computes re-
sult/3 + 5 and thus belongs to the myfunc function.

Conversion to IR

The next stage of the front end involves the conversion of EVM instructions
into an intermediate representation.

Conversion of most arithmetic instructions is straightforward since our IR
can represent stack variables. For example, the EVM instruction ADD pops
two words from the stack, adds them, and pushes the result to the stack. An
ADD instruction can therefore be converted to the assignments:

1 stack[sp-1] := stack[sp-1] + stack[sp]
2 sp := sp - 1

where sp is a global variable representing the stack pointer. The concepts of
a stack and a stack pointer are ideally eliminated at a later stage, as they do
not exist in Solidity.

20

decompilation by example

Immediately after conversion, the whole program is represented as a sin-
gle large function. This changes once function identification runs in the mid-
dle end. All changes to the sp variable in each basic block are consolidated
into a single change block as part of the conversion process.

While all jumps are indirect in EVM, the conversion module can produce
a reasonably accurate initial CFG by recognizing the PUSH literal; JUMP
pattern.

The CFG of the function that represents the program after conversion
looks as follows, where we have left out instructions for space reasons:

0x56

0x49

0x88

0xc

0x3e

0x94

0x4d

0x68

0x78

0x8c

0x81

0xa1

0x43

0x0

Immediately after conversion, the IR of the basic blocks can be difficult to
read, since values are copied excessively between variables as a result of the
conversion process. This is improved after data-flow analysis. As an exam-
ple, consider the basic block at address 0xa1, which computes result/3 + 5.
After conversion, the basic block contains the following statements:

1 sp += -4 // consolidated sp-delta is -4
2 var(0) := stack[sp+4] // POP
3 stack[sp+4] := 0x3 // PUSH 0x3
4 var(1) := stack[sp+4] // SWAP 0x1
5 stack[sp+4] := stack[sp+3]
6 stack[sp+3] := var(1)
7 var(2) := stack[sp+4] // DIV
8 var(3) := stack[sp+3]
9 stack[sp+3] := (var(2) / var(3))

21

decompilation by example

10 stack[sp+4] := 0x5 // PUSH 0x5
11 var(4) := stack[sp+4] // ADD
12 var(5) := stack[sp+3]
13 stack[sp+3] := (var(4) + var(5))
14 var(6) := stack[sp+3] // SWAP 0x3
15 stack[sp+3] := stack[sp]
16 stack[sp] := var(6)
17 var(7) := stack[sp+3] // SWAP 0x2
18 stack[sp+3] := stack[sp+1]
19 stack[sp+1] := var(7)
20 var(8) := stack[sp+3] // POP
21 var(9) := stack[sp+2] // POP
22 var(10) := stack[sp+1] // JUMP
23 jump var(10)

After conversion to the intermediate representation, the program leaves
the front end and enters the middle end. The middle end applies several dif-
ferent analyses until reaching a fixed point. This includes data-flow analyses,
which improve the readability of the intermediate representation.

Data-flow analyses

The purpose of the middle end is to raise the abstraction level of the interme-
diate representation until readable high-level code can be generated from it.
The middle end accomplishes this by applying various analyses, including
data-flow analyses, control-flow analyses, and function identification.

The data-flow analyses can be grouped into expression propagation and
dead-code elimination. Expression propagation involves propagating the def-
inition of a variable to its point of use when doing so is safe. For example,
consider the following statements from the basic block above:

1 stack[sp+4] := 0x5 // PUSH 0x5
2 var(4) := stack[sp+4] // ADD
3 var(5) := stack[sp+3]
4 stack[sp+3] := (var(4) + var(5))

The assignment in line 1 can be propagated into line 2, so that we get:
1 stack[sp+4] := 0x5
2 var(4) := 0x5
3 var(5) := stack[sp+3]
4 stack[sp+3] := (var(4) + var(5))

Likewise, the assignments in lines 2 and 3 can be propagated into line 4:
1 stack[sp+4] := 0x5
2 var(4) := 0x5
3 var(5) := stack[sp+3]
4 stack[sp+3] := (0x5 + stack[sp+3])

Dead-code elimination involves eliminating assignments to variables that
are never used. Such unused assignments mainly arise as a result of expres-
sion propagation. For example, after the propagation above the variables de-
fined in lines 1, 2, and 3 are never used. Elimination thus yields:

1 stack[sp+3] := (0x5 + stack[sp+3])

Thus the combination of propagation and elimination has raised the compact-
ness of the code, increasing its readability.

As another example, the full basic block at address 0xa1 only contains the
following statements once data-flow analysis has run to a fixed point:

1 stack[sp] := (0x5 + (stack[sp] / 0x3))
2 jump 0x56

The code is clearly far more compact than immediately after conversion.

22

decompilation by example

Function identification

Function identification detects that an external function exists starting with
the basic block at address 0x43. Function identification then separates out the
basic blocks reachable from address 0x43 from the loader code. The CFG now
more clearly corresponds to that of the original Solidity function, myfunc – it
shows a conditional followed by a loop, and then a return:

0x43

0x94

0x78

0x88

0xa1

0x8c

0x81

Stack flattening

A number of other analyses run as part of the fixed-point computation in the
middle end. One of these is stack flattening. Stack flattening replaces each
stack variable in the myfunc function with a local variable, getting rid of the
concepts of a stack and stack pointer.

Control-flow analyses

Once a fixed point is reached, two control-flow analyses are applied to the in-
termediate representation: loop structuring, and structuring of conditionals.

Loop structuring discovers that 0x8c is the beginning of a loop, that 0x8c
and 0x94 are the nodes included in the loop, and that 0xa1 is the follow of
the loop, meaning that control flow transfers there as the result of any break
statements in the loop.

Structuring of conditionals involves finding the point where the two branches
of a conditional meet. This makes it possible to generate more readable code
in the back end. In our example, 0x43 is a conditional header, and 0x78 and
0x81 are the branches. Structuring of conditionals determines that 0x88 is the
follow of this conditional.

At this point, a transformed CFG and some structuring information has
been produced for each function in the smart contract. The middle end out-
puts these to the back end, which converts each function to an abstract syntax
tree (AST) and outputs high-level code.

23

decompilation by example

AST conversion

Rather than outputting high-level code directly from the intermediate repre-
sentation, the decompiler first converts each function to an abstract syntax
tree. The conversion happens through several passes over the code. AST
node types include a Sequence of statements, a Loop, an IfElse node, as well
as Continue and Break nodes. After conversion to an AST, myfunc looks as
follows:

IfElse

Loop

IfElse

Sequence (0x43)

Sequence (0x94)

Sequence (0x78)

Continue

Sequence (0xa1)

Sequence (0x81)

Break

Sequence (0x88)

Sequence (0x8c)

Readability improvements

After conversion to an AST, each function is processed in a readability module
which makes minor semantics-preserving changes to the AST that result in
more readable output.

In our example, the Sequence node at 0x8c is empty and is therefore re-
moved. The Loop node was initially typed as an endless loop, but now it
has its condition set, becoming a pre-tested loop since its header node is an
IfElse node that leads to a Break. Then loop induction variables are detected
and named. The function parameter is also named. The AST now looks as
follows:

24

decompilation by example

Sequence (0x94)

Sequence (0x78) Sequence (0x81)

Sequence (0x43)

Sequence (0xa1)

Continue

Loop

IfElse

Sequence (0x88)

Code generation

Once each function is converted to an AST, code generation is relatively sim-
ple; it involves a pass over the tree, outputting the appropriate high-level code
for each AST node. For example, when visiting a Sequence node, code for
each instruction is emitted in turn. When visiting an IfElse node, the ini-
tial “if (exp) {” is generated, then one branch is visited, then the “} else
{” is generated, the other branch is visited, and the final “}” is generated.

After code generation, the final output of the decompiler is:
1 contract Decompiled {
2 function loader () {
3 mem[0x40:+0x20] = 0x60;
4 assert(!((msg.data.length < 0x4)));
5 var0 = calldataload(0x0);
6 var0 = ((var0 / 0x10000...000000) & 0xffffffff);
7 if ((var0 == 0xacc9d5d6)) {
8 func0(calldataload(0x4));
9 }

10 revert(0x0, 0x0);
11 }
12

13 function func0 (param0) {
14 assert(!(msg.value));
15 if ((0x1 == (param0 % 0x2))) {
16 var0 = 0x1;
17 }
18 else {
19 var0 = 0x2;
20 }
21 i = 0x0;
22 while ((i < param0)) {
23 var0 = (0x2 + var0);
24 i = (0x1 + i);
25 continue;
26 }
27 haltreturn((0x5 + (var0 / 0x3)));

25

decompilation by example

28 }
29 }

With that, the SmallExample contract is successfully decompiled. We have
now provided an overview and intuition of each phase in our decompiler.
The following chapters describe each phase in more detail.

26

5F RO N T E N D

The decompiler takes EVM bytecode as its input. The purpose of the front
end is to convert this bytecode to an intermediate representation that the
middle end can analyze. The front end consists of two phases, parsing and
conversion. In the parsing phase, the bytecode is split into EVM instructions
and their associated operands. The instructions are divided into basic blocks.
During conversion, each EVM instruction is turned into a sequence of state-
ments in our chosen intermediate representation.

5.1 parsing

The parsing phase turns EVM bytecode into basic blocks of EVM instructions.
Because the EVM is stack-based, operands for almost all instructions are im-
plicit. As such, EVM bytecode lives up to its name, using up exactly one byte
per instruction. This makes parsing straightforward. The only exception is
the set of PUSH instructions, PUSH1, PUSH2, ..., PUSH32, which are followed by
a number of bytes forming the operand to the instruction. A comprehensive
mapping from EVM opcodes to instructions can be found in the formal defi-
nition of the Ethereum protocol [23].

The 32 different PUSH instructions have different opcodes. For simplicity
we group these into a single instruction with an operand during parsing. The
same applies to the DUP and SWAP instructions. For example, the DUP3 opcode
becomes a DUP instruction with an operand of 3.

Instructions are split into basic blocks during parsing. Whenever an in-
struction that transfers control is encountered, the current basic block ends
and a new one begins. Examples are the JUMP and JUMPI instructions. The
current basic block also ends if an instruction causes execution to halt.

We must ensure that no jumps can target the middle of a basic block. This
is accomplished by ending the current basic block and starting a new one
when the JUMPDEST instruction is encountered. (The EVM ensures that jumps
can only target such instructions, otherwise the transaction is reverted.)

After parsing, the low-level instructions in each basic block need to be
converted into an intermediate representation to ease analysis in the middle
end.

5.2 intermediate representation

In our chosen intermediate representation, each function in the program is
represented as a control-flow graph (CFG), consisting of a number of basic
blocks connected through edges representing possible flows of control.

A basic block contains a list of instructions, where the last instruction is
always one that transfers control flow to another basic block or terminates the
program. The instructions have types, such as assign and jump. Instructions
operate on expressions, which we describe momentarily. Statements can have
side effects, while expressions cannot. The instructions in our intermediate
representation are described in Figure 5.1.

Most instruction types are self-explanatory. Worth noting is the Asser-
tion instruction that reverts the transaction if its condition evaluates to zero.

27

5.3 expressions and variables

Instruction ::= Assign(Variable, Exp)
| Jump(Loc)
| JCond(Loc, Exp)
| VMCall(Name, Args, Results)
| Call(Loc, Args, Results)
| Ret(Args)
| Assertion(Exp)

Args ::= Exp*
Results ::= Exp*
Loc ::= Exp
Name ::= String

Figure 5.1: A description of the instructions in the intermediate representa-
tion

Another special instruction is VMCall. It is used to represent functionality
that exists only in EVM, not in Solidity. For instance, EVM has the MSIZE
instruction that computes the size of used memory. Solidity does not have
this low-level concept, so we represent it through a VMCall with msize as the
called functionality and hope to get rid of the instruction during processing
in the middle end.

5.3 expressions and variables

Instructions operate on expressions; these can be literals, unary- or binary
operators, or variables. Figure 5.2 lists the different types of expressions.

Exp ::= Literal | UnaryOp Exp | Exp BinaryOp Exp
| Sequence(Exp*) | Variable

UnaryOp ::= not | neg
BinaryOp ::= add | sub | mul | div | mod | xor | gt

| lt | and | or | equal | exponent | mod
Variable ::= LocalVar

| GlobalVar(Name)
| Stack(Literal)
| Mem(Exp, Exp)
| Storage(Exp, Exp)

Figure 5.2: A description of the expressions in the intermediate representa-
tion

It is worth noting that some variable types, such as memory- and storage
variables, have a base address and a length, both of which are generic expres-
sions rather than literals. This means that these variable types can get com-
plex. For example, Storage(Mem(var0, var1), var1) is valid, and such ex-
pressions are not uncommon when decompiling realistic contracts.

As a consequence, it is not immediately clear whether two variables are
aliases of one another, i.e., refer to the same location. For example, one cannot
immediately tell whether Mem(var0, 0x20) and Mem(var1, 0x20) refer to
the same location without further analysis. This problem frequently crops
up for stack variables: given two stack variables, such as stack[sp+3] and
stack[sp-1], they may or may not refer to the same location depending on
how the sp variable changed between their respective program points.

Determining whether variables potentially may refer to the same location,
or if they definitely must refer to the same location is known as alias analysis

28

5.4 conversion

[29]. Our compiler needs at least basic alias analysis in the middle end. We
describe our implementation of a simplistic alias analysis in Section 11.5.

5.4 conversion

The conversion module converts basic blocks of EVM instructions into basic
blocks of IR statements.

All in all, the conversion module converts one basic block at a time. Con-
verting a basic block involves converting each instruction in it.

Since the EVM is stack-based, instructions take operands from the pro-
gram stack. Our intermediate representation therefore includes the concept
of a stack variable, facilitating the conversion of such instructions.

Due to our design of the intermediate representation, many EVM instruc-
tions can be trivially converted. For example, the JUMP instruction is con-
verted into sp = sp - 1; Jump(stack[sp+1]). The Assign IR statements
lets us trivially represent DUP, SWAP, PUSH, etc.

Arithmetic instructions are converted in a straightforward manner. For
example, the ADD EVM instruction is converted into the following sequence
of IR assignments:

1 stack[sp-1] = stack[sp] + stack[sp-1];
2 sp = sp - 1;

where sp is considered a global variable.
Some EVM instructions have a direct counterpart in Solidity. For example,

the CALLER instruction pushes the address of the account that initialized the
current method call. This information is available through the msg.sender
global variable in Solidity. Conversion of such instructions is therefore trivial;
for example, the CALLER instruction becomes:

1 sp = sp + 1;
2 stack[sp] = GlobalVar("msg.sender");

Similarly, some instructions correspond directly to a Solidity built-in func-
tion; e.g., the REVERT instruction corresponds to the revert() Solidity func-
tion. We represent such instructions by generating a VMCall statement. We
do not use the Call statement because then we can distinguish between calls
to user code and calls to built-in functions.

In contrast, certain instructions have no counterpart in Solidity. A triv-
ial example is the PC instruction, which retrieves the value of the program
counter. This concept exists only in EVM, not in Solidity. We represent such
EVM instructions using the VMCall IR statement. We think of this as a call to
a built-in pc function. Such vmcalls are ideally removed before code genera-
tion; otherwise they can be represented using inline EVM assembly.

All of the EVM instructions can be converted using the concepts we have
presented so far. Figure 5.3 provides more examples of how instructions are
converted. The semantics of each instruction, as well as its operands and
results, can be found in the Ethereum yellow paper [23].

All changes to the sp variable are consolidated on a per-block basis; the
total sp-change is kept in each basic block. As an example, consider the fol-
lowing basic block, which computes 1+2:

1 sp = sp + 1;
2 stack[sp] = 1;
3 sp = sp + 1;
4 stack[sp] = 2;
5 stack[sp-1] = stack[sp-1] + stack[sp];
6 sp = sp - 1;

29

5.4 conversion

EVM instruction IR statements)

PUSH 123 sp = sp + 1;
stack[sp] = 123;

POP sp = sp - 1;
DUP1 sp = sp + 1;

stack[sp] = stack[sp-1];
SWAP1 stack[sp+1] = stack[sp];

stack[sp] = stack[sp-1];
stack[sp-1] = stack[sp+1];

STOP VMCall("stop", [], []);
JUMP sp = sp - 1;

Jump(stack[sp+1]);
JUMPI sp = sp - 2;

JCond(stack[sp+2], stack[sp+1]);
ADD stack[sp-1] = stack[sp] + stack[sp-1];

sp = sp - 1;
LT stack[sp-1] = stack[sp] < stack[sp-1];

sp = sp - 1;
SHA3 sp = sp - 1;

VMCall("sha3",
[Mem(stack[sp+1], stack[sp])], [stack[sp]]);

ORIGIN sp = sp + 1;
stack[sp] = GlobalVar("tx.origin");

Figure 5.3: Examples of how various EVM instructions are converted to the
intermediate representation

30

5.4 conversion

After consolidation, the basic block becomes:
1 sp = sp + 1;
2 stack[sp] = 1;
3 stack[sp+1] = 2;
4 stack[sp] = stack[sp] + stack[sp+1];

This step makes analysis within a basic block far simpler, because it is imme-
diately obvious whether two stack variables are equal.

To produce valid Solidity code, all stack variables must be removed, since
Solidity does not have the explicit concept of a stack. This can be accom-
plished through stack flattening, which turns each stack location into a local
variable. This is not the responsibility of the front end, however; our experi-
ence shows that too much imprecision remains at this stage for stack flattening
to be feasible. Stack flattening occurs in the middle end once the precision of
the CFG has been increased sufficiently.

Once the program is converted to the intermediate representation, it is
passed on to the middle end, where various analyses are iterated to a fixed
point. The details of these analyses are described in the following chapters.

31

6DATA- F LOW A NA LYS I S

Data-flow analysis involves expression propagation and dead-code elimina-
tion. These analyses are applied to increase the abstraction level, and thus
readability, of the decompiler output.

For example, consider the following statements, which could be the result
of a direct conversion from EVM bytecode to our intermediate representation:

1 var0 = 3
2 var1 = 5
3 var2 = var0 + var1

These statements have a low abstraction level because they are produced by
direct conversion from EVM instructions, which can only take operands from
the top of the program stack.

The statement var2 = var0 + var1 uses the variables var0 and var1. Ex-
pression propagation therefore attempts to locate possible definitions of these
variables. These variables are defined by the statements var0 = 3 and var1
= 5, respectively. The right-hand side of the definitions are then propagated
to the point of use, resulting in the following code:

1 var0 = 3
2 var1 = 5
3 var2 = 3 + 5

At this point, neither var0 nor var1 are used. Dead-code elimination there-
fore can safely eliminate the assignments. We are left with the code:

1 var2 = 3 + 5

This code is of a higher abstraction level than the original code. It is more
compact, and arguably more readable.

6.1 expression propagation

The goal of expression propagation is to propagate the definition of a variable
to the point of use of said variable whenever it is safe to do so.

Expression propagation recovers more complex expressions from simpler
ones, increasing the abstraction level of the code. This is possible because our
IR supports arbitrarily complex expressions, unlike EVM bytecode.

Expression propagation has the additional benefit of resolving indirect
jump targets, increasing the precision of our CFG, and thus improving the
performance and accuracy of every analysis.

Expression propagation is applied to every variable in the program, one at
a time. This involves two phases. First, the possible definitions of the variable
must be discovered. The definition must be unique, otherwise propagation
is not safe. Then it must be ascertained that none of the variables appearing
on the right-hand side of the definition are redefined before the use-point is
reached.

For example, consider the following statements:
1 var0 = 3
2 var1 = 5
3 var2 = var0 + var1
4 var1 = var1 + 1
5 var3 = var2

32

6.2 dead-code elimination

To propagate the use of var2 in the statement var3 = var2, the unique def-
inition var2 = var0 + var1 is found. However, since var1 is redefined be-
tween the definition and use of var2, propagation is not safe in this example.
If we did proceed to propagate anyway, we would get:

1 var0 = 3
2 var1 = 5
3 var2 = var0 + var1
4 var1 = var1 + 1
5 var3 = var0 + var1

which is unsound – now var3 ends up holding the value 9 instead of 8, as it
would before propagation.

In other words, for expression propagation to be safe, these two conditions
must hold [3]:

– The definition must be unique.
– Each variable appearing in the right-hand side of the definition must

not be redefined along any path from the definition to the point of use.

Since the second condition talks about any path, we need an all-paths analysis
to determine whether expression propagation is safe.

In the example we have given, each variable is a local variable; it is trivial
to check whether two local variables are the same. Testing variable equality
is significantly harder when variables can be indirect, which is the case for
memory- and storage variables. Similarly, reasoning about whether two stack
variables in different basic blocks are the same requires reasoning about the
value of the sp variable. This introduces imprecision while computing the
possible definitions of some variable types. It also means that the all-paths
analysis becomes less precise. Both have to make use of a may-analysis to
check if two variables may be the same.

The algorithm for expression propagation is given as pseudocode in Fig-
ure 6.1. The algorithm uses two helper functions, find_possible_defini-
tions and is_redefined_along_path. Both of these helpers must perform
the variable equality checks we just described, using a may-analysis. They
therefore need to keep track of changes to the sp variable across basic blocks.

6.2 dead-code elimination

Dead-code elimination involves eliminating any instructions that are safe to
eliminate. We refer to such unnecessary statements as “dead code”. While
modern optimizing compilers may not produce much dead code, expression
propagation results in many statements becoming dead. In the example code
from above:

1 var0 = 3
2 var1 = 5
3 var2 = 3 + 5

The assignments to var0 and var1 have become dead code after expression
propagation. They can therefore be eliminated.

Dead-code elimination is an important analysis, because without it, the
generated code would be riddled with unnecessary assignments left over by
expression propagation, and would therefore be nearly unreadable.

It is safe to eliminate an assignment instruction when the defined variable
is never used in the future. This means that to perform dead-code elimination,
an all-paths analysis is needed starting at the definition. As with expression

33

6.2 dead-code elimination

1 function propagate_expressions (f) {
2 for each basicblock in f {
3 for each instruction in basicblock {
4

5 // attempt to propagate each used variable
6 for each used_var in used_vars(instruction) {
7

8 // find possible definitions
9 use_point = (basicblock, instruction, used_var);

10 defs = find_possible_definitions(use_point);
11

12 // definition must be unique
13 if (length(defs) != 1) {
14 continue;
15 }
16

17 def_point = defs[0];
18 def_ins = def_point.instruction
19 rhs_vars = used_vars(def_ins);
20

21 // check that no variable from the definition is
22 // redefined along any path from definition to use
23 safe_to_propagate = true;
24 for each path in all_paths_between(def_point,
25 use_point) {
26 for each rhs_var in rhs_vars {
27 if (is_redefined_along_path(rhs_var, path)) {
28 safe_to_propagate = false;
29 }
30 }
31 }
32

33 if (safe_to_propagate) {
34 instruction.replace_uses(used_var, def_point.rhs);
35 }
36 }
37 }
38 }
39 }

Figure 6.1: The algorithm for expression propagation

propagation, variable equality can only be approximated, and the analysis
can gain precision by keeping track of sp variable changes.

34

7F U NC T I O N I D E N T I F I C AT I O N

A Solidity function can be marked as external or internal.1 An external
function can be invoked as the result of a transaction, while an internal func-
tion can only be invoked internally, i.e., from within the contract.

Recall that initially, we consider all of the contract code as belonging to a
single large function, namely the contract loader code, which starts at address
0x0. Function identification aims to identify and separate out the basic blocks
that can safely be moved to separate functions.

Function identification is a crucial part of decompilation for two reasons.
First, with function identification the code is split into many smaller parts,
each of which can be understood individually, improving readability [43].
Additionally, our analyses perform far better on many small functions than
a single large one, since the performance of some inter-basic block analyses
scales super-linearly with the number of edges in the analyzed CFG.

7.1 external function identification

We identify external functions separately, since they are much easier to iden-
tify than internal ones, and can be separated out using simple pattern match-
ing on the loader code. External function identification does not require a
very precise CFG nor any expensive analyses. Identifying external functions
through pattern-matching on the loader code is also done by the Ethersplay
[10] analysis tool for EVM bytecode, from which we got the idea.

All calls to external functions go through the loader code. The loader code
uses the calldataload instruction to load the first four bytes of user input.
These bytes identify the function to call. The loader cases over these bytes,
and when a match is found, it jumps to the external function.

Figure 7.1 shows an example of the decompiled loader code after external
function identification. Before the external functions are identified, the basic
blocks of each external function reside in the loader code, such that the pro-
gram is one large function.

An external function first uses the calldataload instruction to load its ar-
guments. It then performs the actual work of the function. Finally the return
instruction is used to halt execution and return the result of the call.

Our external function identification works through pattern matching on
the loader code. It looks for the calldataload of the first four bytes of input.
It then identifies any conditional jumps based on these four bytes after a com-
parison against a literal.

When such a conditional jump is identified, the destination basic block,
and any basic block reachable from it, is split off into a separate function. The
jump to the basic block is replaced with a call statement. (Note that a func-
tion call statement only exist in our intermediate representation, not in the
EVM instruction set.)

Once the basic blocks of an external function have been determined through
a depth-first search, parameters are identified by analyzing the use of call-
dataload instructions. Typically, the first four bytes identifying the function

1 A contract can also be marked as public, which is a generalization of external, and as private,
which is a specialization of internal. The details are not important here.

35

7.2 internal function identification

1 function loader () {
2 if ((msg.data.length < 0x4)) {
3 revert(0x0, 0x0);
4 }
5 var0 = calldataload(0x0);
6 var0 = (var0 / (2 ** (256 - 32)));
7 var0 = (0xffffffff & var0);
8 if ((0x6482e626 == var0)) {
9 func0(calldataload(0x4));

10 }
11 else if ((0x1c31f710 == var0)) {
12 func1(calldataload(0x4), calldataload(0x24));
13 }
14 else if ((0x625fcce7 == var0)) {
15 func2();
16 }
17 else if ((0xc3da42b8 == var0)) {
18 func3();
19 }
20 else {
21 revert(0x0, 0x0);
22 }
23 }

Figure 7.1: The decompiled loader code of an example contract after external
function identification.

are retrieved using calldataload(0x0). Then the first function argument is
loaded using calldataload(0x4), the next using calldataload(0x24), and
so on. Return values can be identified as the input to the haltreturn vmcall
that comes from the RETURN EVM instruction; this input is a memory address
where the packed return values reside.

It may happen that two different external functions both call the same in-
ternal function. In that case there is an overlap in the basic blocks pertaining
to each function. We resolve this issue by duplicating any basic blocks belong-
ing to more than one function, which corresponds to inlining the internal
functions. As the precision of the CFG is improved, internal function iden-
tification may be able to identify that these basic blocks belong to a separate
internal function and split them off accordingly.

7.2 internal function identification

The aim of internal function identification is to detect and separate out the
code of internal functions. Internal functions are functions that cannot be
directly called as the result of a transaction; control only flows to internal
functions indirectly through external function calls.

The easiest solution is to never identify internal functions at all, instead
simply inlining their code in the external functions. While this produces cor-
rect code, the code can often become significantly more readable if internal
functions are identified.

When an internal function is identified and separated out, it can be un-
derstood separately, increasing readability [43]. Additionally, the same code
is then not inlined in multiple places; this increases the compactness of the
high-level code. Also, when an internal function is not identified, its final
return statement appears in the intermediate representation as an indirect
jump. This obscures the control flow by producing a goto statement during

36

7.2 internal function identification

code generation. It is therefore crucial to discover as many internal functions
as possible.

A heuristics-based approach

Initially, we attempted to identify internal functions through a heuristic; a
function call typically manifests itself as a push of the return address, then
a push of the arguments, then a push of the function address, and then a
jump instruction. We used this heuristic to detect which basic blocks are func-
tion headers. Function returns manifest as indirect jumps. We therefore as-
sumed that all indirect jumps are returns, in order to discover where a func-
tion ended.

Unfortunately this approach did not work for smart contracts of realistic
size. Sometimes the return address is placed on the stack in a separate basic
block, and the pattern of pushes cannot be detected. Sometimes multiple
return addresses are pushed in sequence, as a tail-call optimization by the
compiler.2 Thus the heuristic would often fail, and it would sometimes create
a function when there was none, resulting in an incorrect decompilation. We
therefore needed a more principled approach.

Effects of function creation

Our current approach is to only separate code into a new internal function
when it is definitely safe to do so. Essentially, internal function identification
works by considered each basic block ℎ in the program in turn, and checking
if ℎ can safely be turned into the header node of a new function 𝑓.

The question, then, is which conditions must be checked before a function
can safely be identified and separated out. To answer this question, we con-
sidered which changes to the program occur when a function is identified. It
must be possible to make all these changes without altering the semantics of
the program.

When an internal function 𝑓 with header node ℎ is identified, the following
changes occur:

1. Each predecessor 𝑝 of ℎ has its jump to ℎ replaced with a call statement.

2. For each predecessor 𝑝, the return address is analyzed to determine to
which address control-flow is transferred after the call, and a jump state-
ment is inserted into 𝑝 after the call statement.

3. The basic blocks of 𝑓 are moved out of the current function and into their
own, separate function.

4. The indirect jumps inside 𝑓 that have the return address as destination
are converted into return statements.

5. The number of parameters and return values of 𝑓 are determined, and
then:

(a) The arguments for each call to 𝑓 are added to the relevant call
statement according to the discovered number of parameters.

(b) The return values for each call to 𝑓 are added to the relevant return
statements according to the discovered number of return values.

2 For example, for the call f(g()) the compiled EVM instructions could push the return address,
then the address of f, then jump to g; when g returns, it jump to f, which computes its value and
returns to the return address.

37

7.2 internal function identification

Determining the basic blocks of a function

Assuming that it is safe and feasible to make the changes just described, the
basic blocks of 𝑓 must be determined and moved into a separate function.

To determine which basic blocks belong to 𝑓, we define the reach of a basic
block 𝑛 recursively as:

reach(𝑛) =
⎧{
⎨{⎩

{𝑛}, if 𝑛 is a return
{𝑛} ∪ ⋃𝑠∈successors(𝑛) reach(𝑠), otherwise

In plain terms, the reach of ℎ includes any basic block reachable from ℎ with-
out following the successors of any return statements. Thus the basic blocks
included in a function 𝑓 with header node ℎ is simply the set reach(ℎ).

Safety requirements

To safely perform the changes described above, a number of conditions must
hold.

For change (1) to be safe, every predecessor of ℎ must reach ℎ through a
direct jump. For change (2) to be safe, it must be known with certainty what
the value of the return address is for every predecessor of 𝑝; this value is
placed onto the stack before the function call. Note that this is not always
the address of the next basic block, due to the tail-call optimization described
earlier. Change (3) is always safe. For change (4) to be safe, it must be known
which of the indirect jumps in 𝑓 jump to the return address. For change (5) to
be safe, we must be able to determine the number of parameters and return
values of the function. The process is described in more detail in Section 7.2,
but it requires the height of the stack to be known at any basic block inside
the function.

In addition to the safety requirements above, there is another requirement
which should hold before we are ready to think of 𝑓 as a conventional function.
We require that that there be no jumps “into the middle of 𝑓”; that is, for each
node 𝑛 ∈ (reach(ℎ) − {ℎ}) it must hold that:

predecessors(𝑛) ⊆ reach(ℎ)

Additionally, reach(ℎ) should never include the header of another function.
If all these safety requirements are met for some basic block ℎ, then inter-

nal function identification can safely turn reach(ℎ) into a new function, per-
forming changes (1) - (5) described above.

Counting parameters and return values

When a function is called, the EVM calling convention dictates that the top
word of the stack holds the first argument, the second word holds the second
argument, and so on. The return address resides immediately after the last
argument. The stack layout at call-time is illustrated in Figure 7.2a. After
a function has performed its work, the return address is removed from the
stack, and the return values are placed on top of the stack. This is illustrated
in Figure 7.2b.

The overall strategy to determine the number of parameters and return
values of a function 𝑓 is as follows. We compute the stack depth at which
the return address resides. Each word that resides above the return address
at call-time is a function parameter. Thus, knowing the offset of the return

38

7.2 internal function identification

argument 0

argument 1

⋮
argument n

return address

(a) The stack layout before a call

return value 0

return value 1

⋮

return value n

(b) The stack layout after a call

Figure 7.2: Stack layouts

address lets us compute the number of function parameters. Once we know
this, we can compute how much the stack height changes from the function
entry until a return statement is reached. This delta lets us compute the
number of return values.

As a concrete example, assume that at call-time the return address of 𝑓 re-
sides at stack[sp-3], and function execution changes the stack-height by −2.
Then we know that the values above the return address, namely stack[sp],
stack[sp-1] and stack[sp-2], are the function arguments. Thus 𝑓 has 3 pa-
rameters. We also know that 𝑓 must remove its parameters and return address
from the stack during its execution, and the number of return values is the
number of words that remain in the stack frame afterwards. Since the stack
delta is −2, then the number of return values is 3 + 1 − 2 = 2.

To discover the offset of the return address, we make the assumption that
a function never accesses any part of the stack below its stack frame. That is,
the deepest stack-value accessed by a function is the return address, since the
arguments reside above it. Thus to discover where on the stack that the return
address resides, our analysis determines the deepest sp-offset used anywhere
in the reach of the discovered function.

Since the sp variable typically changes from one basic block to another, it
is necessary to determine the height of the stack at each basic block within
the function. If the stack height cannot be uniquely determined, the function
cannot be safely identified.

In short, to determine the number of parameters and return values, our
analysis finds the deepest sp-offset, assumes the return address resides there,
uses this information to compute the number of parameters, and uses how
much the sp-value changes throughout the function to compute the number
of return values.

We have now explained how external and internal functions are identified:
external functions are found through a heuristic, while internal functions are
discovered by checking if each basic block satisfies the safety conditions de-
scribed, and making it a function header node if so. Besides function identifi-
cation and the data-flow analyses, the middle end applies a number of other
analyses which are described in the following chapter.

39

8O T H E R A NA LYS E S

Our decompiler design includes various analyses that simplify the represen-
tation of the program, either to improve readability or to increase the effective-
ness of other analyses. Examples of such analyses are reconstructing assert
statements, merging of basic blocks, and removing stack variables through
stack flattening. This chapter describes these miscellaneous analyses.

8.1 assert reconstruction

The intermediate representation sometimes contains a conditional jump to
a basic block that reverts the current transaction. Such conditional jumps
are relatively common; they naturally arise when there is an assert(condi-
tion); statement in the original Solidity source code, as there is no assert
EVM instruction. However conditional jumps to reverts may also be inserted
by the compiler for various other reasons, e.g., to check that an array access
does not go out of bounds, or to ensure no currency is transferred unless the
called function is marked as payable.

Such conditional jumps can be replaced with an equivalent assert state-
ment. Performing such a transformation is useful because it simplifies the
control-flow graph that is being analyzed, resulting in better precision and
performance of other analyses. It also means that control-flow analysis has
to identify fewer conditionals.

Our analysis looks for any conditional jumps to a basic block that only
has a single instruction, invoking the revert vmcall. When such conditional
jumps are identified, they are replaced with an assert instruction, asserting
the negation of the expression in the conditional jump. The basic block ter-
minator becomes an unconditional jump to the following basic block. Simi-
larly, our analysis looks for conditional jumps falling through to a basic block
that invokes revert; in case of such fall-throughs the condition need not be
negated.

An example of a conditional jump to a revert vmcall is shown in Figure
8.1.

Basic block (0x88):
stack[sp] = 1;
jcond 0x9b, !(msg.value)

Basic block (0x93):
vmcall revert (0x0, 0x0)

Basic block (0x9b):
stack[sp] = stack[sp] + 1;

Figure 8.1: An example of a conditional jump to a revert statement

After the transformation is applied, the resulting basic blocks are shown
in Figure 8.2.

40

8.2 merging of basic blocks

Basic block (0x88):
stack[sp] = 1;
assert (!msg.value)
jump 0x9b;

Basic block (0x9b):
stack[sp] = stack[sp] + 1;

Figure 8.2: The basic blocks of Figure 8.1 after assert reconstruction

8.2 merging of basic blocks

Sometimes, a basic block 𝐵1 has a single successor 𝐵2, and 𝐵2 has 𝐵1 as its
single predecessor. In that case it is safe to merge the two basic blocks.

Merging of basic blocks is desirable because it improves the precision of
the decompiler; it is easier to be precise in an intra-BB analysis compared
to an inter-BB one, e.g., because reasoning about the stack pointer is trivial
within a basic block. Merging is also desirable for performance reasons, as
having fewer blocks to process results in a speedup. Additionally intra-BB
propagation and elimination are far cheaper than inter-BB ones, since they
do not have to perform an all-paths analysis. Thus the more work can be
performed in the intra-BB analyses instead of the inter-BB ones, the faster
decompilation terminates.

Merging of basic blocks 𝐵1 and 𝐵2 is safe provided that the following con-
ditions hold:

– 𝐵2 is the sole successor of 𝐵1.
– 𝐵1 is the sole predecessor of 𝐵2.
– 𝐵1 is not a function header.

To merge 𝐵1 and 𝐵2 into a new basic block 𝐵′, the instructions of 𝐵1 and 𝐵2
must be concatenated to form the instructions of 𝐵′. Recall that changes to the
global stack pointer variable are kept track of on a per-basic block basis. Thus
before concatenation, the instructions of 𝐵1 which use a stack variable must be
adjusted to account for the change of the stack pointer in 𝐵2. The new basic
block 𝐵′ has the predecessors of 𝐵1, the successors of 𝐵2, and the address of
𝐵1.

As an example, consider the basic blocks in Figure 8.3. Since the two
basic blocks satisfy the previously mentioned conditions, they can safely be
merged.

Basic block (0x4e):
sp += 1;
stack[sp] = 0x54;
jump 0x6a;

Basic block (0x6a):
sp += 2;
stack[sp] = 0x1;
stack[sp-1] = 0x2;
jump stack[sp-2];

Figure 8.3: An example of two basic blocks that can be safely merged

The merging process involves adjusting the stack variable stack[sp] in
the first basic block according to the sp-delta of the second basic block, which

41

8.3 stack flattening

is +2. The variable therefore becomes stack[sp-2] after adjustment. The
final merged basic block is shown in figure 8.4.

Basic block (0x4e):
sp += 3;
stack[sp-2] = 0x54;
stack[sp] = 0x1;
stack[sp-1] = 0x2;
jump stack[sp-2];

Figure 8.4: The basic blocks of Figure 8.3 after merging

After merging, a cheap and simple intra-basic block expression propaga-
tion would suffice in order to determine that the jump destination is 0x54,
making it possible to reduce the number of successors of the basic block to
one, potentially enabling further merging.

8.3 stack flattening

Stack flattening is an analysis that turns each stack variable in a function into
a local variable; after flattening a function, the code in the function no longer
has references to any stack variables, nor to the global stack pointer variable,
sp.

It is highly desirable to perform stack flattening, because while the Ethereum
VM does feature a stack, high-level Solidity code has no such concept. Thus
stack flattening results in higher-level code that more closely resembles Solid-
ity. Additionally, it is far easier for other analyses to reason about local vari-
ables than stack variables, since stack accesses are always indirect through
the sp variable, which introduces imprecision.

Stack flattening is a concept that also arises in the decompilation and anal-
ysis of Java bytecode [48, 45]. This is unsurprising, since both the EVM and
the Java VM are stack-based virtual machines. However stack flattening is
simpler for Java bytecode, because the JVM specification guarantees that each
program point has a unique stack height [48].

The general idea in stack flattening is to turn every stack slot into its own
variable. Thus we can replace all occurrences of stack[sp+0] with var0, all
occurrences of stack[sp-1] with var1, and so on.

In order to safely perform stack flattening, our analysis must compute the
stack height at the beginning of each basic block. If the stack may have more
than one possible height at any program point, stack flattening can not be
done safely, since the stack slots no longer correspond to local variables in
a one-to-one manner. As a consequence, whenever the analyzed CFG has
imprecision, e.g., in the form of indirect jumps, stack flattening typically be-
comes impossible for the given function. The imprecision of indirect jumps
introduces new paths in the CFG, and these paths often disagree with other
paths on the stack height at some program point.

Provided that the CFG for a function is sufficiently precise and the stack
height can be uniquely determined at each basic block, stack flattening is ap-
plied. Recall that in our intermediate representation, changes to the sp vari-
able are consolidated on a per-basic block basis. This means that each basic
block has an sp delta.

Our analysis works by first traversing the CFG, keeping track of the stack
height at each basic block by analyzing the sp delta values. Once the stack

42

8.4 successor reduction

height is known, the sp delta of each basic block is adjusted to zero, which
involves modifying the offset of each stack variable in the basic block. Finally
a mapping is set up from stack variables to local variables, and all occurrences
of stack variables are replaced with the corresponding local variable.

8.4 successor reduction

The successor reduction analysis is intended to refine the over-approximation
of possible successors for any indirect jumps in the program.

Any basic block that ends in an indirect jump has a set of possible suc-
cessors, which is a sound over-approximation. We initially use the set of all
possible basic blocks as a trivial over-approximation to this set.

Decreasing the size of this set makes every other analysis significantly
faster and more effective. The inter-basic block expression propagation analy-
sis benefits especially much, since it involves an all-paths analysis on the CFG.
Better expression propagation in turn results in an even more precise CFG.
Successor reduction is therefore a crucial analysis.

In EVM code, jump targets are pushed to the program stack at one point
during the program. A later JUMP instruction pops this word off the stack and
transfers control to it. We assume that every jump target in the program is
placed on the stack as the result of a PUSH instruction. In other words, we
assume that all jump targets are literals rather than being the result of a com-
plex computation. 1

This assumption allows us to narrow down the possible targets of an indi-
rect jump by removing those successors whose address does not appear as a
literal anywhere in the program.

As iterated dead-code elimination removes literals from the program, it
is useful to reapply the successor reduction afterwards. Thus this analysis
should be iterated to a fixed point along with the other analyses in the middle
end.

8.5 constant folding

Our decompiler attempts to reduce expressions as much as possible through
constant folding. Arithmetic identities such as var0 - var0 == 0 and var0
/ 1 == var0 are used to simplify expressions further. This is occasionally
useful to determine at decompile-time whether a conditional jump is taken
or not.

1 This assumption has held for every program we have inspected so far. However it is easy to
imagine that such jump destinations would be prime targets for obfuscation of EVM code.

43

9CO N T RO L - F LOW A NA LYS I S

The control-flow analysis (CFA) phase of the decompiler discovers and struc-
tures loops. The result is a more readable high-level output; if a loop cannot
be structured, goto statements are output during code generation. This phase
also structures conditionals, which means discovering the point where the
two branches meet. This results in code with a lower nesting level and fewer
goto statements.

9.1 structuring loops

Various approaches to loop structuring exist, and the area has been the target
of recent research. For simplicity we decided to use Cifuentes’s algorithm,
which is based on interval analysis. This section is therefore heavily based on
Cifuentes’ PhD thesis [3].

Structuring a loop involves discovering that a cycle exists; determining
which nodes to include in the loop; determining the loop type (pre-tested,
post-tested, or endless); and computing the follow node of the loop [3]. We
first introduce the necessary interval theory, and then we explain how each
of these steps is accomplished.

Interval theory

The loop structuring algorithm we use is based on the graph-theoretic con-
cept of an interval. Finding the intervals in a CFG allows the discovery of
loops, because each interval corresponds to at most one loop, and intervals
provide a nesting order for loops. Intervals were first defined by J. Cocke [34]
as a graph-theoretic concept, which was found to be useful in control-flow
analysis in compilers; see Allen [30] for example applications.

An interval is defined in terms of a node in a graph. So let 𝐺 = (𝑉, 𝐸) be
a graph consisting of a set of nodes 𝑉 and a set of edges 𝐸. Let ℎ ∈ 𝑉 be a
node in 𝑉. Then we define 𝐼(ℎ) (the interval of ℎ) as the maximal subgraph for
which it holds that ℎ is the only entry node, and every cycle goes through ℎ.
We refer to ℎ as the header node of the interval.

A graph can be partitioned into a unique set of disjoint intervals [3]. A
concrete example of a graph partitioned into intervals is given in Figure 9.1.
Nodes 1 and 2 are header nodes. Intervals are marked with dotted boxes. 𝐼(1)
does not correspond to a loop, but 𝐼(2) does due to the back-edge (3, 2). It
is also worth noting that node 4 belongs to 𝐼(2) despite not being part of the
loop nodes.

44

9.1 structuring loops

1

2

3

4

Figure 9.1: An example of a graph partitioned into intervals

An algorithm for partitioning a graph into intervals is given in Figure 9.2,
which is adapted from [3]. The algorithm discovers the intervals in the graph
one at a time. The first interval has the graph header node as its header. The
algorithm proceeds by repeatedly including into the current interval each
node that already has all its predecessors in the interval – this is what en-
sures the interval is the maximal subgraph. When no more progress is made,
each node that has not all, but at least some predecessor in the interval be-
comes the header node of a new interval.

1 function find_intervals (graph) {
2 intervals = []
3 unprocessed_header_nodes = [graph.header_node]
4 remaining_nodes = graph.nodes - {graph.header_node}
5

6 while not empty(unprocessed_header_nodes) {
7

8 // compute the interval with h as a header node
9 h = unprocessed_header_nodes.pop();

10 interval = Interval(h);
11 intervals.append(interval);
12

13 // add nodes to the interval while possible
14 do {
15 for node in remaining_nodes {
16 if interval.contains_all(node.predecessors) {
17 remaining_nodes.remove(node);
18 interval.add_node(node);
19 }
20 }
21 } while (a node was added to the interval)
22

23 // compute more header nodes to process
24 for node in remaining_nodes {
25 if interval.contains_some(node.predecessors) {
26 remaining_nodes.remove(node);
27 unprocessed_header_nodes.append(node);
28 }
29 }
30 }
31

32 return intervals
33 }

Figure 9.2: The algorithm for interval partitioning

45

9.1 structuring loops

Hecht argues that the interval is a good representation of loops [38], be-
cause each interval corresponds to at most one loop. Additionally, intervals
can be used to find a nesting order for loops. In contrast, using cycles is
too fine a representation, since loops are not necessarily disjoint; and using
strongly connected components is too coarse a representation, since they do
not provide a nesting order [3].

Intervals provide a nesting order for loops through the so-called derived
sequence of graphs. Let 𝐺0 denote the original graph. Then it is possible to find
the intervals of 𝐺0 and collapse each interval 𝐼(ℎ) into a single node 𝑛. The
predecessors of 𝑛 are the predecessors of ℎ that do not belong to the interval.
The successors of 𝑛 are the successors which are reachable from the interval
but not part of the interval. Collapsing all the intervals gives a new graph 𝐺1.
Finding the intervals of 𝐺1 and collapsing them gives a new graph 𝐺2. This
process can be iterated to a fixed point.1 The sequence 𝐺0, 𝐺1, ..., 𝐺𝑛 is called
the derived sequence of graphs.

This derived sequence is useful because the intervals of 𝐺1 represent the
loops of 𝐺0 with the highest nesting level, the intervals of 𝐺2 represent the
loops with second-highest nesting level, and so on. It follows that if 𝐺0 is the
CFG of a program, the length of the derived sequence is proportional to the
nesting level of loops in the program.

Once the derived sequence of graphs has been computed for some CFG,
each interval contains at most one loop. Let 𝐼(ℎ) be an interval that may con-
tain a loop. We define a latching node of an interval as any node which has
ℎ as a successor. It follows by the definitions we have given that an interval
contains a loop if and only if it has at least one latching node. The loop struc-
turing algorithm therefore computes the latching nodes; if there is none, the
interval needs no further processing.

Determining the loop nodes

Given one or more latching nodes, the next task is to determine which nodes
of the interval belong to the loop. This is necessary because while each inter-
val may contain at most one loop, there is no guarantee that all the nodes in
an interval are part of the loop. Figure 9.3 gives an example of a single inter-
val where nodes 1 and 2 should be included in the loop, but nodes 3 and 4
should not.

1

2

3

4

Figure 9.3: An interval containing a loop. Note that not all nodes in the inter-
val are part of the loop.

1 For some graphs, this iteration will reach a fixed point before the graph is collapsed into a single
node; we then call the graph irreducible, and loop structuring fails. This occurs if the so-called
canonical irreducible graph exists as a subgraph of the current graph [3]. We do not expect this
to happen in programs compiled from Solidity, since the Solidity programming language does
not contain a goto statement, and therefore cannot produce an irreducible graph.

46

9.1 structuring loops

To determine the loop nodes, Cifuentes describes an approach based on
the reverse post-order numbering of nodes. In a reverse post-ordering scheme,
nodes are visited in a depth-first search starting at the header node. Nodes
are numbered on their last visit, and numbering starts with the highest num-
ber and counts down. In the example of Figure 9.3, the nodes are numbered
in this way.

Cifuentes claims that in this numbering scheme, loop nodes are precisely
the nodes with numbers between that of the header node and that of the
maximal latching node. This certainly holds for the example of Figure 9.3.

Unfortunately when we implemented the algorithm, we found out that Ci-
fuentes did not account for the fact that the reverse post-ordering of a graph is
not unique; it depends on the order with which successors are visited. In
Figure 9.3 we have preferred to visit the leftmost successor first during the
depth-first search. If we had instead visited the rightmost successor first, we
would have gotten the equally valid reverse post-ordering illustrated in Fig-
ure 9.4.

1

4

2

3

Figure 9.4: The graph of Figure 9.3 with an alternative (but equally valid)
reverse post-ordering of the nodes.

Others have noticed this problem as well. To fix this issue, Yakdan et al.
[25] propose adding an additional condition: for a node 𝑛 to be included in
the loop nodes, there must exist a path from 𝑛 to the header ℎ through a
latching node.

In summary, the nodes of the loop are determined to be those with num-
bers between those of ℎ and the maximal latching node, subject to the afore-
mentioned constraint.

Determining the loop type

At this point it is possible to determine the type of the loop; a loop can be pre-
tested, post-tested, or endless. Determining the type can be done by simple
pattern-matching: a pre-tested loop has a conditional loop exit at the header
node, a post-tested loop has a conditional loop exit at the maximal latching
node, and an endless loop has neither, although it may still contain break
statements.

However we found it simpler to delay this analysis until the back end.
Therefore every loop is initially considered an endless loop. The readability
improvements in the back end detect when an endless loop has a conditional
loop exit as its header node. Such a loop is then transformed into a pre-tested
loop.

47

9.2 structuring conditionals

Determining the loop follow node

The loop follow node is determined next. The follow node is the node to
which break statements transfer control. If there is only one edge leading
to some node 𝑛 outside of the set of loop nodes, then 𝑛 is simply made the
follow node.

A more difficult case arises when there is more than one node reachable
from inside the loop. In that case we call this a multi-exit loop. Such loops
cannot be expressed in the Solidity language, since Solidity does not have
a goto statement. Unfortunately, in practice the case arises anyway due to a
compiler optimization.

A simple solution to this problem is to choose one node as the follow node,
and to generate a goto for any other loop exits. The node with the smallest
reverse post-ordering number should be chosen as the follow node, since the
other nodes are reachable from it. This is the approach used by Cifuentes [3].

We have devised an alternative solution to this problem that results in
fewer goto statements being produced. The general idea is that if more than
one node can be reached from within the loop, then it may be possible to add
one of these nodes to the set of loop nodes. By repeating this process until
there is only one loop exit node left, the loop can be successfully structured.
If adding a follow node to the loop is not possible, our decompiler can fall
back to Cifuentes’ approach and generate a goto statement.

We describe this approach in slightly more detail. Assume that we are in
the process of structuring a loop, and that the loop has more than one exit
node. Let OutReachable be the set of successors of loop exit nodes within
the current interval. As long as the OutReachable set contains more than one
node, the loop cannot be structured without goto statements. We therefore
consider each 𝑛 ∈ OutReachable. If all predecessors of 𝑛 are in the set of loop
nodes, then 𝑛 can be safely added to the set of loop nodes without changing
the semantics of the program. We repeat this process as long as it is possible
to do so, and as long as the OutReachable set contains more than one node.

To summarize the loop structuring algorithm of our decompiler, it is based
on intervals analysis. Our decompiler processes each interval in the derived
sequence of graphs, starting with intervals representing the most-nested loops.
If the current interval contains a latching node, it contains a loop. The nodes
belonging to the loop are determined using a reverse post-ordering number-
ing scheme, along with the constraint we described. The loop type is set to
endless, to be fixed in the back end. Finally, the loop follow node is computed;
if it is not unique, the just-described technique is used to increase the chances
of fully structuring the loop.

9.2 structuring conditionals

Structuring conditionals involves finding the so-called follow of each condi-
tional, which is the earliest point where the two branches of the conditional
meet.

Finding the follow node of a conditional is important because it results in
more readable high-level code after code generation. If a conditional has a
follow, but it is not structured, then a goto statement is generated in one of
the branches.

As a concrete example, consider the basic blocks of Figure 9.5. If the con-
ditional at address 0x5a is successfully structured, the basic block at address
0x80 is chosen as follow. In that case, code generation results in the code of

48

9.2 structuring conditionals

Basic block (0x5a):
jcond 0x71, !(msg.value)

Basic block (0x62):
var0 := 1
jump 0x80

Basic block (0x71):
var0 := 0
jump 0x80

Basic block (0x80):
return var0

Figure 9.5: Basic blocks forming a conditional with a follow

Figure 9.6a. If structuring of conditionals is not performed, the code of Fig-
ure 9.6b is generated instead.

1 if (!msg.value) {
2 var0 = 0;
3 }
4

5 else {
6 var0 = 1;
7 }
8

9 return var0;

(a) Generated code with successful
structuring of conditionals

1 if (!msg.value) {
2 var0 = 0;
3 0x80:
4 return var0;
5 }
6 else {
7 var0 = 1;
8 goto 0x80;
9 }

(b) Generated code without structur-
ing of conditionals

Figure 9.6: The effects of structuring conditionals

To compute the follow of a conditional, the overall idea is to compute the
set of basic blocks reachable from the true branch and from the false branch,
take the intersection of these two sets, and pick the “earliest” node in this
intersection as the follow.

Let 𝑐 be a basic block that is a conditional, i.e., that ends in a jcond in-
struction. Let 𝑐𝑡 and 𝑐𝑓 be the first nodes along the true and false branches
of 𝑐, respectively. We compute the follow of a conditional based on what we
call the reach of a basic block. In the context of structuring conditionals, the
reach of a basic block 𝑛 is the set of basic blocks reachable from 𝑛, with some
constraints, which we describe momentarily. Then let:

𝐼 = reach(𝑐𝑡) ∩ reach(𝑐𝑓)

Then the follow of 𝑐 is min(𝐼), based on a partial ordering where BB1 ≤ BB2 if
there exists a path 𝑝 from BB1 to BB2 where every basic block along 𝑝 belongs
to 𝐼.

When computing the reach, the outgoing edges of indirect jumps are not
followed. This is because the set of possible successors of indirect jumps is an
over-approximation of the actual successors, and thus an invalid follow may
be found if such edges are followed. The consequence of not following such
edges is that the computed reach is too small, but it is often still sufficient to
find a follow node, thus improving readability. Additionally, edges back to
the conditional 𝑐 are not followed; such edges may occur as part of a loop. If
such edges were followed, the loop would invalidate the partial ordering, as
every basic block in 𝐼 could reach every other basic block. If the conditional

49

9.3 duplication of terminating basic blocks

belongs to a loop, then edges leading out of the loop are also not followed,
since loops and conditionals cannot overlap in this way in Solidity.

9.3 duplication of terminating basic blocks

The Solidity compiler sometimes performs an optimization meant to reduce
the size of the EVM bytecode. Unfortunately, this optimization sometimes
makes the techniques for control-flow structuring that we have just described
fail. Therefore undoing this optimization results in more readable code by
producing fewer goto statements.

During compilation, the Solidity compiler may avoid producing duplicate
code, instead inserting a jump to an existing address in the code. For example,
if a Solidity function has multiple return statements, then the compiler may
opt to output the function epilogue code only once, and insert a jump to this
epilogue on all other occasions where the function returns. If our decompiler
does not undo this optimization, it must output goto statements during code
generation, since control-flow structuring fails.

The compiler optimization is undone in the following way. We look for
any basic block that has no successors. This could be caused by a function
return or by a terminating vmcall. If such a node is found, and it has multiple
predecessors, then we duplicate the node until every predecessor has its own
unique copy of the basic block as its successor.

This compiler optimization is not unique to the Solidity compiler. The
same type of problem also arises, e.g., in the context of decompilation of x86
machine code; Yakdan et al. apply a similar technique in their decompiler
to reduce the number of gotos in their output [25]. They note that it may
be undesirable to duplicate large basic blocks, as it increases the output code
size significantly.

50

10BAC K E N D

The back end generates high-level code in a Solidity-like language. It accom-
plishes this through a number of stages. First, the control-flow structuring
information from the middle end is used to convert the intermediate repre-
sentation into an abstract syntax tree (AST). The AST is then transformed and
augmented to improve the final generated code. Finally, the AST is traversed
to generate high-level code.

10.1 conversion to an abstract syntax tree

It is be possible to generate high-level code directly from the intermediate rep-
resentation of the middle end, without converting the program to an AST.
However when we tried this, we found that keeping track of loops, condi-
tionals, and follow nodes all at once, while attempting to generate code, was
too difficult and error-prone.

Instead we convert the intermediate representation to an AST and gener-
ate code from that. Conversion to an AST can be done using a number of
separate passes. This has the advantage that each separate pass is kept sim-
ple, facilitating the implementation and reasoning about each pass. Once the
program is converted to an AST, code generation from the AST is straightfor-
ward.

The node types in our abstract syntax are given in Figure 10.1. The instruc-
tions and expressions are defined identically as in our intermediate represen-
tation.

Contract ::= Function*
Function ::= HeaderNode
HeaderNode ::= ASTNode

ASTNode ::= Sequence(Instruction*)
| IndirectJump(Loc)
| IfElse(Condition, TrueNode, FalseNode, FollowNode)
| Loop(HeaderNode, FollowNode)
| Continue
| Break
| None

Loc ::= Exp
Condition ::= Exp
TrueNode ::= ASTNode
FalseNode ::= ASTNode
FollowNode ::= ASTNode
HeaderNode ::= ASTNode

Figure 10.1: A description of the nodes in our abstract syntax

Each function in the program is converted into an AST separately, through
several distinct passes. First, every basic block is converted into a Sequence
node. Then indirect jumps are removed from the Sequence nodes, being re-
placed by an edge to an IndirectJump node. Conditional jumps are also re-
moved, being replaced by an edge to an IfElse node. The follow nodes of

51

10.2 readability improvements

IfElse nodes are set based on the structuring information from the middle
end. After this, the structuring information is used to introduce Loop nodes.
Once all the nodes are introduced, certain edges are removed from the graph
according to the follow nodes of loops and conditionals. This ensures that the
final result is a tree, i.e., that each node except the root has a unique parent.

10.2 readability improvements

After the program has been converted to an AST, the AST is modified and
augmented in various ways to improve the readability of the final generated
code.

One of the readability improvements is naming of variables. A pass over
the AST assigns names to various variables, including function parameters,
returned variables, and loop induction variables. Function parameters could
for instance be named param0, param1, etc., while returned values can be
named result0, result1, etc. Loop induction variables might be named i, j,
etc. Storage variables can also be named.

Another pass recognizes accesses to variables of the mapping type so that
more readable code can be generated for such mapping accesses. A Solidity
mapping access is translated into EVM instructions as a storage access that
is indexed by the SHA-3 hash of the mapping index concatenated with the
mapping number. For example, the Solidity code var0 = mapping2[var1]
could appear in our intermediate representation as:

1 mem[0x40:0x60] = var1;
2 mem[0x60:0x80] = 0x2;
3 tmp = sha3(mem[0x40:0x80]);
4 var0 = storage[tmp];

The pass for mapping recognition identifies this pattern and turns it into a
statement involving a new type of expression called a MappingAccess. The
above code then becomes:

1 var0 := mapping2[var1]

Separate passes recognize string- and array operations, which have similarly
complex instruction patterns.

Some Solidity types are not 256 bits wide, which is the EVM word size. An
example is the address type, which is 160 bits wide. All uses of such variables
appear in the intermediate representation as a binary AND. For example, if
var0 is an address type, it appears in the IR as:

var0 & 0xff.

Such large expressions are difficult to read, especially when multiple of them
appear in a single line. A pass over the AST therefore discovers and removes
such binary ANDs, replacing them with a cast. In our example, the output
code thus becomes address(var0).

Various other readability improvements are possible. For example, the
code:

1 if (exp) {
2 }
3 else {
4 statement;
5 }

is arguably more readable when converted to the following, equivalent code:

52

10.3 code generation

1 if (!exp) {
2 statement;
3 }

Such minor transformations are applied in this phase of the decompiler.

10.3 code generation

The code generation phase generates high-level code in a Solidity-like lan-
guage. Code generation involves a pass over the AST. A symbol table is used
to keep track of function names. A per-function symbol table keeps track of
variable names.

Once the program has been converted to an AST, code generation is straight-
forward. For example, to generate code for a Contract node, the decompiler
outputs “contract DecompiledContract {”, generates the code for each func-
tion, then outputs “}”. To generate code for a function, the decompiler first
outputs its signature; this includes the function name, its parameter list, and
its return values list, and could, e.g., be:

function func0 (uint param0) returns (uint, uint) {

The decompiler then generates code for the function header node, which re-
cursively causes code generation to occur for the full function body. Finally
it outputs a closing brace.

Code generation for a Sequence node simply involves generating code for
each of its instructions, and then recursively generating code for its successor
node. Code generation for a loop involves outputting “while(”, generating
code for the loop condition, and then outputting “) {”, generating code for
the body of the loop, and outputting the final “}”. Code generation for the
other node types, including IfElse, Continue and Break nodes, is similarly
straightforward.

If a node is reached more than once, a goto statement is generated. This
can happen if control-flow structuring fails. Reaching an IndirectJump node
also produces a goto statement. All the possible successor nodes are then
added to a set of pending nodes. Code is generated for these pending nodes
by the end of code-generation for the current function.

It is necessary to generate labels for any nodes that may be the target of
a goto statement. Such goto statements can occur if any IndirectJump nodes
remain, or if either of the control-flow analyses fails. An initial pass computes
which Sequence nodes could be the targets of goto statements based on node
successor information. While generating code for such possible target nodes,
a label, which includes the address of the node, is output before its instruc-
tions. For example, if the statement goto var0; has Sequence nodes with ad-
dresses 0x7f and 0x131 as possible targets, then before generating code each
of those nodes, the decompiler would output 0x7f: and 0x131:, respectively.

10.4 low-level concepts that remain in the output

The output from our decompiler would ideally be valid, compilable Solidity
code. However in practice, producing compilable output is difficult, since
some low-level details may remain in the code because of imprecision in the
data-flow and control-flow analysis phases. Since the decompiler output is
not always valid Solidity code, we refer to it as belonging to a Solidity-like
language (SLL). In this section we describe the differences between Solidity
and SLL, and argue about how remaining low-level details can be removed.

53

10.4 low-level concepts that remain in the output

We have left the design of a type recovery system as future work due to
time constraints. SLL therefore does not feature type annotations. Types have
to be added to the output manually before SLL can be compiled with a Solid-
ity compiler. Alternatively, the default type uint256 could be used for each
variable, since the generated code contains casts whenever a variable is used
that is not of this type.

The notion of stack variables and the stack pointer do not exist in Solidity,
but they sometimes remain in SLL. The decompiler uses stack flattening to
remove stack variables whenever possible, but if indirect jumps remain, stack
flattening may be impossible. Indirect jumps may remain due to expression
propagation being too weak, or due to function identification failing, leaving
the returns inside the function as indirect jumps. It is not always possible to
resolve all imprecision, so all we can hope for is to reduce the occurrence of
stack variables as much as possible.

A Solidity smart contract does not explicitly feature any loader code; rather,
the loader code is inserted during the compilation process. Our decompiler
does not currently attempt to remove the loader code. In fact, having the
loader code explicitly available is desirable, since it shows which input val-
ues lead to which functions getting called.

54

11I M P L E M E N TAT I O N

To investigate the practicality of our design, we have implemented a decom-
piler called DSol. This chapter gives an overview and some details of our
implementation.

11.1 language of implementation

We chose Python 2.7 as our language of implementation. We found using
a high-level language productive, although it did come with performance
costs compared to a lower-level language such as C. We also found the multi-
paradigmatic nature of Python useful, as it let us write in the style most con-
venient for each task, whether that was an imperative, an object-oriented or
a functional programming style – we used all three during our development.
We also found it a major drawback that Python is dynamically typed; static
typing would have been very helpful in catching subtle bugs early.

In total, DSol comprises 7118 lines of Python code. The distribution of line
counts across various modules are given in Figure 11.1. The figure shows that
the majority of the programming effort went into the analyses in the middle
end.

Module Line count

Front end 699
EVM instruction representation 224
Parser 57
Conversion 418

Middle end 3556
Expressions 537
Intermediate Representation 210
Data-flow analysis tools 471
Expression propagation 251
Dead-code elimination 147
Function identification 474
Other analyses 652
Control-flow analyses 634
Fixed-point iteration 180

Back end 1010
AST representation 264
AST conversion 326
Readability 152
Code generation 268

Figure 11.1: A non-comprehensive overview of line counts for modules in
DSol

55

11.2 data structures

We wrote each component from scratch; the only library we used that
is not part of the Python standard library is the pysha3 module for crypto-
graphic hash computations.

11.2 data structures

A number of data structures need to be represented during decompilation,
including:

– EVM instructions
– Expressions

– Literals
– Unary operators
– Binary operators
– Variables

– IR statements
– Basic blocks
– AST nodes

We chose to represent all of these as objects. While this is not as efficient as
using, say, tuples, or structs in a C-like language, we found using objects
for our representation extremely convenient due to polymorphism and inher-
itance. For example, each type of expression has its own implementation of
the gen_code method, so that the code generation module can work on a uni-
form interface, not having to worry about the type of expression it is dealing
with.

11.3 successors and predecessors

In the middle end of the decompiler, each function is represented as a CFG
with basic blocks and edges between them. To represent these edges, we store
successor information for a given basic block in the basic block itself. We
also found it beneficial for performance to maintain predecessor information,
rather the recomputing it each time it is needed. The successors and prede-
cessors are represented as object references stored in sets, allowing 𝒪(1)-time
membership tests.

11.4 enumerating the nodes of a function

Several of our analyses need to know which nodes belong to a function. Since
successor information is updated by some analyses, the nodes of a function
can change at any time. To compute the nodes belonging to a function, we
perform a depth-first search starting at the function header node. As this
is a major performance bottleneck, we found it helpful to cache the result,
invalidating the cache entry whenever successor information for a function
node is modified. We also found it important for performance to implement
the depth-first search iteratively rather than recursively.

11.5 alias analysis

Determining whether two variables may or must refer to the same location is
called alias analysis [29]. This is required for many of the analyses in the mid-

56

11.6 all-paths analyses

dle end. For example, expression propagation involves discovering the pos-
sible definitions of a used variable 𝑣. This involves checking whether several
variables may be aliases of 𝑣.

We have implemented a simplistic alias analysis. To answer whether two
variables may be the same, the sound answer is “yes.” To answer whether two
variables must be the same, the sound answer is “no.” Our analysis gives these
answers by default.

If the compared variables have different types, a precise answer of “no”
can be given. If the variables have literal offsets, such as when comparing
mem[0x40:0x20] and mem[0x60:0x20], then the analysis can also give a pre-
cise answer. However if the variables are indirect, such as mem[var0:0x20],
then our implementation gives up and falls back to the sound answer.

The only case where our implementation performs a more complex com-
parison is during the all-paths analyses, which keep track of changes to the
stack pointer so that precise comparisons between stack variables is possible.

11.6 all-paths analyses

Several of the analyses in the middle end require an all-paths analysis on the
CFG. For expression propagation, all forward paths from the definition to
the use of a variable must be checked for redefinitions. For dead-code elim-
ination, all forward paths from the definition of a variable must be checked
for uses of the variable. For internal function identification, all backwards
paths the function header must be followed to find the possible values of the
return address. We first implemented these analyses using techniques from
optimizing compilers [29, 32].

For dead-code elimination, DSol needs to perform a liveness analysis. A
variable is live at a program point if it may be used in the future. If the defini-
tion of a variable is not live, it can be eliminated. A technique for computing
this liveness information based on Aho et al. [29] is as follows. The variables
which are live going in and coming out of each basic block are maintained
as sets. Data-flow equations are then defined, describing restrictions on the
live-out set of one basic block in terms of the live-in sets of its successors. The
analysis starts with a sound approximation of these sets. The idea is then to
repeatedly improve this approximation until a fixed point is reached.

For expression propagation, DSol needs to perform a reaching definitions
analysis, i.e., compute at which points a used variable may have been defined.
Propagation is only possible if the definition is unique. This analysis can also
be performed in terms of a fixed-point computation based on data-flow equa-
tions [29].

After implementing these techniques, we realized that this approach does
not generalize well to the case when most data accesses are indirect, since we
do not have access to a powerful alias analysis. As an example, our analysis
determined that almost every stack variable is live, because some stack vari-
able is used in the future, and the two may be equal.

We decided to abandon this approach. Instead DSol uses a less efficient ap-
proach that involves actually exploring every path. This has the advantage of
being simple to implement. Additionally, the stack pointer can be kept track
of along each path, which enables precise alias analysis of stack variables.

After writing three all-paths analyses, each with their own bugs, we de-
cided to instead write a single module that is sufficiently general that it can be
used for each of expression propagation, dead-code elimination and function

57

11.7 analysis order and redundancy

identification. We found having a single, general module very useful, since it
gave us fewer lines of code to maintain and debug.

We therefore wrote a single class, the DefUseExplorer, so called because
it explores paths along the CFG while noting any definitions and uses of vari-
ables. The DefUseExplorer makes it possible to subscribe to definitions and
uses of specific variables. The DefUseExplorer then explores all paths, fol-
lowing either successor or predecessor edges depending on the chosen direc-
tion. When a use or redefinition of a subscribed-to variable occurs, a callback
is invoked.

The DefUseExplorer keeps track of changes to the stack pointer along its
paths, which makes it possible to perform precise alias analysis of stack vari-
ables in different basic blocks. Without this, we could not determine if a vari-
able such as stack[sp-3] is redefined in another basic block.

When the CFG is sufficiently imprecise, the number of paths to explore be-
comes too large to be practical. Rather than letting DSol run for an excessively
long time, we have added a maximum number of basic blocks that the DefUse-
Explorer is allowed to explore. If the limit is reached, the DefUseExplorer
gives up, and the safe option is taken for each analysis, so that propagation,
elimination and function identification do not occur in this case.

11.7 analysis order and redundancy

In the middle end, we run a number of different analyses until reaching a
fixed point. We have found that the order in which we run these analyses
is important for the performance of the decompiler. This is because many of
the expensive all-paths analyses perform far better once the precision of the
CFG improves. Therefore, any analysis that is both cheap and can improve
the precision of the CFG should be run to a fixed point first.

We therefore found it useful to group the analyses into two classes: cheap
and expensive analyses. The cheap analyses typically run in less than a sec-
ond even on large contracts, while the expensive analyses sometimes take tens
of seconds to run. At first, only the cheap analyses are run repeatedly. Once a
fixed point is reached, the expensive analyses are included in the fixed-point
computation.

We created a number of redundant but very fast analyses to add to the
category of cheap analyses. For example, dead-code elimination normally in-
volves an expensive all-paths analysis to determine if a variable is used at a fu-
ture program point. Sometimes, however, the variable is redefined within the
same basic block. We can therefore create a very cheap, redundant intra-basic
block dead-code elimination by simply taking the inter-basic block analysis
and limiting it to a single block. The same is true for expression propagation.

The cheap analyses thus include intra-basic block propagation and elim-
ination, constant folding, and assertion reconstruction. These analyses are
all run until a fixed point is reached, and then the expensive analyses run;
these include inter-basic block propagation and elimination, function identi-
fication, and stack flattening.

11.8 handling of deployment contracts

A contract is deployed to the network using a deployment contract. The
contract-creating transaction results in the execution of the deployment con-
tract. When the deployment contract is executed, it performs the work of

58

11.9 known issues and limitations

the constructor of the contract. It then halts, returning the bytecode of the
deployed contract that runs henceforth.

DSol recognizes deployment contracts by looking for a pattern that con-
sists of a haltreturn vmcall that returns an area of memory loaded by the
coderead vmcall. When a deployment contract is detected, DSol extracts the
bytecode of the deployed contract and recursively decompiles it. During the
decompilation of this second deployed contract, DSol retains the functions
from the decompilation of the first deployment contract and adds these to
the output. This is how the contract constructor is restored.

11.9 known issues and limitations

Due to time constraints we have left certain problems unresolved in our im-
plementation of DSol. The following list describes these limitations:

– The Solidity fallback function, which is the default function invoked if
no external function is chosen, is not separated out from the loader code.

– Post-tested loops are not recognized and improved in the readability
module.

– Correct but superfluous continue statements are generated at the end
of some loops.

– Variable declarations are never output.
– String recognition is not implemented.
– Not every vmcall is represented in the output using syntactically valid

Solidity code; for example, code generation for the haltreturn vmcall
produces a haltreturn statement in the output, which does not exist
in Solidity, rather than emitting inline assembly containing a RETURN
instruction.

– Functions are not marked as external or internal in the output.
– Some of the readability transformations are currently implemented in

the middle end rather than the back end.
– Storage variables are not named in the readability module.
– Casts are currently detected and accounted for during code generation

rather than in the readability improval where this analysis conceptually
belongs.

Note that all of these issues are not conceptually difficult to resolve; they sim-
ply require further engineering effort.

Additionally, during our evaluation we found that DSol fails to decom-
pile a small percentage of contracts for a variety of reasons. We also found
that DSol fails to structure certain conditionals that should be structured. We
describe these issues and how to resolve them during the discussion of our
results in Section 13.1 and 13.3.

59

12E VA LUAT I O N

To evaluate our design and implementation, we have devised a number of
experiments to investigate the robustness, correctness, and output readability
of DSol. This chapter describes these experiments and presents our results.
Interpreting and discussing the results is deferred until the next chapter.

12.1 evaluated metrics

Existing research on decompilation uses a variety of metrics as the basis of
evaluation. Schwartz [18] and Yakdan et al. [25] evaluate correctness by run-
ning the decompiled programs through a test suite with an expected output
for each input. They also evaluate structuredness, a measure of how many
goto statements remain in the output, since this decreases readability. Ci-
fuentes [3] and Yakdan et al. [25] measure output compactness, which pre-
sumably reflects readability.

We have chosen to evaluate our decompiler based on all these metrics.
Structuredness and compactness are useful metrics because they provide quan-
titative ways to evaluate the readability of the output of our decompiler. Cor-
rectness is crucial; without it, the decompiler output hurts rather than helps in
understanding the semantics of the decompiled contract. Beside these three
metrics, we additionally measure robustness, which is the ability of our de-
compiler to successfully decompile real smart contracts.

Several past works on machine-code decompilation [13, 25, 17] have per-
formed a comparative evaluation with Hex-Rays, the “industry standard” of
machine-code decompilation [13]. In our case there is no sufficiently mature
decompiler for EVM bytecode that we can compare against.1 Instead, we com-
pare our results with those of existing machine-code decompilers when doing
so is reasonable.

12.2 data set

To evaluate machine-code decompilers, authors have either written their own
small sample programs, or they have manually picked and downloaded open-
source projects or malware samples. In contrast, the bytecode of every single
smart contract on the Ethereum network is publicly available on the blockchain.
We can use the bytecode of these contracts to evaluate the robustness, struc-
turedness and compactness of our decompiler.

We are thus in the unique situation of being able to quickly download
bytecode for thousands of real programs and evaluate our decompiler on
these. As of December 2017, there were nearly a million smart contracts on
the Ethereum blockchain [16]. For time reasons it is therefore not realistic to
evaluate our decompiler on every existing smart contract; a subset of contracts
must be chosen.

The online blockchain explorer Etherscan features a large collection of
smart contract addresses with accompanying bytecode and Solidity source

1 An early attempt at a decompiler for smart contracts, called Porosity, exists; however we were
unable to successfully run the software, and the author does not provide an evaluation. Porosity
is described in more detail in Section 15.6.

60

12.3 experimental setup

code [8]. We downloaded all 27593 smart contracts in this collection as of
May 27, 2018. After removing contracts with duplicate bytecode, 27165 con-
tracts remained, forming our input data set. We believe that this subset of
smart contracts is representative of Ethereum smart contracts in general.

To better understand our data set, we have plotted the complexities of
the contracts in Figure 12.1. The complexity is measured by the number of
EVM instructions in the deployed contract. The figure shows that while many
of the contracts have around 1500 to 3000 instructions, the data set includes
some very small and some very large contracts as well.

0 2000 4000 6000 8000 10000+
0

2,000

4,000

6,000

EVM instructions

Co
nt

ra
ct

s
in

da
ta

se
t

Figure 12.1: The number of EVM instructions per contract in our input data
set

For evaluating correctness we have written a collection of sample pro-
grams with a series of inputs and corresponding expected outputs. These
are described in more detail in Section 12.5

12.3 experimental setup

To investigate the robustness, structuredness and compactness of the output
of our decompiler, we decompiled every smart contract in our data set of
27165 contracts. We logged the pertinent details of each decompilation, in-
cluding running time, the produced output or error message, the number of
goto statements in the produced contract, and so on. The details were writ-
ten to files on disk. We then analyzed this data. The results are presented in
the following sections.

We decompiled the contracts on the machine whose details are given in
Figure 12.2. The decompilation process is CPU bound, not memory bound.
We therefore decompiled 8 contracts in parallel, since our machine has 8 threads
of execution.2 As some decompilations did not terminate, we set a maximum
running time of 180 seconds; if decompiling surpassed this timeout, the pro-
cess was terminated.

Decompiling the contracts that did not time out took a total of 187.91 CPU
hours, spending an average of 25.63 seconds per contract. The distribution of
the running times is illustrated in Figure 12.3. The figure shows that the ma-

2 The machine only has 4 cores, so this may increase the average running time slightly.

61

12.4 robustness

Hardware Description

Machine Lenovo Y50-70
CPU Intel Core i7-4700HQ, 2.40GHz
Memory 16 GB DDR3
Disk 256 GB SanDisk Ultra II SSD
OS Arch GNU/Linux, kernel release 4.16.3-1-ARCH
Architecture x86_64

Figure 12.2: Details of the machine used for our experiments

jority of decompilations finish within 30 seconds, although a non-negligible
number of decompilations never finish, instead reaching the 180 second time-
out.

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0+

0

2,000

4,000

6,000

8,000

10,000

Running time (s)

N
um

be
ro

fc
on

tr
ac

ts

Figure 12.3: Running times of our decompiler

12.4 robustness

To investigate the robustness of our decompiler, we ran it on each contract
in our input data set, noting whether the decompiler successfully produced
an output, whether the decompilation timed out, or whether the decompiler
failed to produce an output.

Our results are summarized in Figure 12.4. The figure indicates that our
decompiler successfully produced an output for 92.18% of contracts in our
data set.

It is natural to question whether our decompiler is only able to decompile
less complex contracts, and fails or times out on larger ones. We therefore
characterized the complexity of contracts in each category. We measure the
complexity in terms of the length of the input bytecode, since this metric can
be obtained even for contracts which could not be parsed. This characteriza-
tion of complexities is illustrated in Figure 12.5.

62

12.5 correctness

Success Failure Timeout
0

5,000

10,000

15,000

20,000

25,000
25,035

1,354 769

N
um

be
ro

fc
on

tr
ac

ts

Figure 12.4: The outcomes of decompilation

0 10000 20000 30000+
0

1,000

2,000

3,000

4,000

5,000

Bytecode length

Co
nt

ra
ct

s

(a) Success

0 10000 20000 30000+
0

50

100

150

Bytecode length

Co
nt

ra
ct

s

(b) Failure

0 10000 20000 30000+
0

20

40

60

Bytecode length

Co
nt

ra
ct

s

(c) Timeout

Figure 12.5: Distributions of bytecode lengths for decompilations which suc-
ceeded, failed, and timed out

The average bytecode lengths for decompilations which succeeded, failed,
and timed out, are 5043, 7614, and 12860, respectively.

12.5 correctness

When decompiling a program, it is crucial that the semantics of the program
be preserved. Thus we need a way to check that the decompiler output is
semantically equivalent to the input bytecode.

To investigate the correctness of the output of our decompiler, we wrote
a number of smart contracts that exhibit common Solidity language features.
We then wrote a number of tests for these contracts by manually reasoning
about the behavior of each contract by examining the Solidity source code.
That is, we determined a number of inputs and corresponding expected out-
puts for each contract. Thus if the Solidity compiler and our decompiler pro-
duce correct output, then the decompiled contract should return the expected
output on each input.

Unfortunately our decompiler does not produce output that can be com-
piled back to executable bytecode; the biggest obstacle is that the decompiler
does not perform type recovery at present. We therefore wrote an interpreter
for the abstract syntax, which is the final representation of the decompiled
program before high-level code is generated.

63

12.5 correctness

Note that because we interpret the AST, any errors in the final code gen-
eration phase are not caught by our correctness tests. However once the ab-
stract syntax trees are produced, code generation is a straightforward traver-
sal of the trees, with few opportunities to make mistakes. We have manually
read the generated code of each test contract without spotting any mistakes
in code generation.

In short, to evaluate correctness we decompiled each of our sample con-
tracts, then interpreted the produced AST, providing the appropriate call data
corresponding to an external function call. We then checked that the output
returned upon halting was as expected, or alternatively, that the transaction
was reverted when this was the expected behavior.

We wrote a total of 24 test contracts with a total of 120 tests. Our test con-
tracts are described in Figure 12.6. We have run each test multiple times while
compiling the test contracts both with and without compiler optimizations.

What is tested Contract name Tests

Simplest decompilation Minimal 2
Function argument order ArgOrder 1
Repeated call to internal function Multicall 8
Call with many arguments Multiargs 1
Return with many return values Multiret 3
Four simple arithmetic functions FourSimple 3
Mappings Mapping 8
Arrays and constructors Array 9
String handling String 5
Endless loop Endless 5
Simple loop Loop 1
Nested loops NestedLoops 1
A do-while loop PostTestedLoop 4
Types smaller than 256 bits SmallTypes 4
More types smaller than 256 bits SmallTypes2 2
The greater-than operator GT 2
Event logging Log 1
Bitwise negation Neg 3
Accessing contract storage Storage 5
Non-commutative arithmetic NonCom 17
Tail call optimization TailCall 5
Nested conditionals NestedIfElse 4
Conditionals with the same true- and false-node IfElseSame 3
Language features used in esoteric ways TryToBreak 23
Total 120

Figure 12.6: Contracts used to investigate correctness

Initially, not all of these tests passed. However we have made output cor-
rectness a high priority in the development of DSol; thus whenever a test

64

12.6 structuredness

failed, we made an effort to understand the source of the failure and fix it.
Therefore all the tests pass.

Because we have fixed each correctness failure, and because our test con-
tracts are relatively simple, we do not expect our result to generalize to practi-
cal contracts from the blockchain. We have planned an evaluation of correct-
ness on more complex contracts, which we describe as future work in Section
14.9.

12.6 structuredness

When our decompiler produces goto statements, readability is decreased [35].
It is therefore relevant to measure the extent to which our decompiler recovers
control-flow structure, as a failure to do so results in goto statements being
produced. We refer to functions with at least one goto statement as unstruc-
tured functions.

Structuredness in the context of decompilation has been measured by Schwartz
[18] as the total number of goto statements in a collection of programs, and by
Yakdan et al. [25] as the percentage of functions for which no goto statements
appear.

The 25035 successful decompilations resulted in a total of 30902 goto state-
ments being produced across 525945 functions.

We measured the number of contracts with and without at least one goto
statement. This result is illustrated in Figure 12.7. The figure indicates that
12.47% of contracts contain a goto statement. In contrast, only 1.38% of func-

Structured Unstructured
0

5,000

10,000

15,000

20,000

21,913

3,122

N
um

be
ro

fc
on

tr
ac

ts

Figure 12.7: The number of contracts with and without goto statements

tions are unstructured. The average number of goto statements in these func-
tions is 4.26.

To understand the context in which goto statements appear, we investi-
gated the complexity of structured and unstructured functions, measured by
the number of statements in the decompiled output. These are shown in Fig-
ure 12.8. The figure shows that the complexities of structured and unstruc-
tured functions are distributed differently. (Note that the axes in the figures
have different scales.) Most structured functions are very small, having no
more than 10 statements; in contrast, nearly all unstructured functions have
20 statements or more, and a sizeable amount have more than 200 statements.

65

12.7 compactness

0 25 50 75 100+
0

50,000

100,000

150,000

200,000

250,000

Number of statements

St
ru

ct
ur

ed
fu

nc
tio

ns

(a) Structured functions

0 100 200 300 400 500+
0

1,000

2,000

3,000

Number of statements

Un
st

ru
ct

ur
ed

fu
nc

tio
ns

(b) Unstructured functions

Figure 12.8: A comparison of the number of statements in structured and
unstructured functions.

On average, structured functions have 13.77 statements, while unstruc-
tured functions have 114.90 statements.

12.7 compactness

Cifuentes [3] and Yakdan et al. [25] measure output compactness as part
of their decompiler evaluation, with the idea that compactness is correlated
with a higher abstraction level and therefore more readable code. They mea-
sure compactness in terms of a reduction ratio, which is the ratio between the
number of instructions in the low-level input and the number of statements
in the high-level output. Yakdan et al. [25] define:

Reduction ratio = (1 −
size of output
size of input) ⋅ 100

We therefore decided to measure compactness for our decompiler as the
ratio between the number of EVM instructions in the input and the number
of statements in the output.

Figure 12.9 shows how the reduction ratios are distributed across con-
tracts. The figure shows that very few decompiled contracts have a reduction
ratio lower than 70%.

Our compactness results for the average contract are summarized in Fig-
ure 12.10.

66

12.7 compactness

60− 70 80 90 100
0

2,000

4,000

6,000

8,000

Reduction ratio (%)

N
um

be
ro

fc
on

tr
ac

ts

Figure 12.9: The distribution of reduction ratios across contracts

Measurement Result

Average EVM instructions per contract 2379.38
Average statements per contract 318.67
Average reduction ratio 86.61%

Figure 12.10: Average results for compactness

67

13D I S C U S S I O N

In this section we interpret our results, compare them with those of related
works, and discuss how to improve our decompiler.

13.1 robustness results

Our robustness results show that our decompiler produces an output for
92.18% of contracts in our data set. In contrast, Schwartz et al. [19] report
their success rate on a per-function basis, producing a recompilable output for
82.2% of functions with their decompiler Phoenix, and for 77.5% of functions
with the decompiler Hex-Rays. Note that this comparison is made with reser-
vations, since there are differences between decompiling EVM bytecode and
x86 machine code, and since Schwartz et al. only count recompilable output,
which our decompiler never produces. Still, the success rates of Schwartz et
al. indicate that a near-100% success rate cannot be expected.

We characterized the bytecode lengths of contracts for which decompi-
lation succeeded, failed, or timed out. This is illustrated in Figure 12.5. Our
characterization shows that contracts that cause decompilation failure are, on
average, more complex than contracts that can successfully be decompiled.
However there are also simple contracts which cause failures. The contracts
which cause timeouts were, on average, more complex than contracts from
the other two categories. This is expected, as the running time increases with
contract complexity.

It is also worth understanding the cause of decompilation failures. During
our experiments, our decompiler failed to decompile 1354 out of 27158 con-
tracts. Of these failures, 1246 were assertion failures, while 108 were crashes.
The assertion failures happen because we have inserted a number of sanity
checks throughout the code: if some invariant no longer holds, we prefer that
the decompiler halts without an output, rather than giving a wrong result.
Producing a wrong output is still possible, but at least some of these cases
can be immediately noticed and fixed. To give some examples, we check that
no nodes become unreachable during AST conversion, that the successor and
predecessors sets of nodes correspond with one another, and that jump and
jcond statements only appear as the last instruction in a basic block.

This means that there is a trade-off between robustness and correctness;
we could achieve a higher robustness result by disabling these assertions. We
prefer that the decompiler produces no output to producing an incorrect one,
however.

We have analyzed the error messages to understand why decompilation
fails. The crashes are due to programming errors; this could, e.g., be from
calling a method on an object that does not implement it, or using an object
that is None. The assertion errors are the result of bugs. For example, the
module that splits EVM instructions into basic blocks sometimes puts two
terminating instructions (jump, terminating vmcalls, etc.) in one basic block.
This is caught by an assert statement.

Other causes of assertion failures are a failure to find any valid successors
for an indirect jump; encountering an unhandled EVM instruction; and the
disappearance of nodes during AST conversion.

68

13.2 correctness results

These robustness failures require engineering effort to fix; the cause must
be understood and the decompiler must be modified accordingly. We do not
expect fixing any of these issues to result in any major design changes. We
believe so because we have already fixed a large number of these robustness
issues without having to change the latest iteration of our design. We have
not addressed the described issues due to time constraints.

We may also consider the decompilations that timed out as a type of fail-
ures. The distribution of Figure 12.3 indicates that few contracts take between
120 and 180 seconds to decompile, and then there is a larger amount that take
180 seconds or more, i.e., which timed out. This spike in contracts at 180+ sec-
onds could indicate that some of the contracts in this category result in non-
termination during decompilation. Indeed, after investigating and fixing a
few such cases, we found this to be the case. In one such example, expression
propagation had a bug that caused it to continue forever; the analysis used
the same statement as a definition and a use, such that

var0 := (1 + var0)

was propagated forever, becoming

var0 := (1 + (1 + (1 + (1 + var0))))

and so on. We fixed this case, but addressing the remaining non-terminating
cases is a matter of further engineering effort.

13.2 correctness results

Our correctness results show that our decompiler successfully decompiles
every one of the test programs we have written, and that the output is seman-
tically equivalent to the original contract for our chosen inputs. While this re-
sult shows that our decompiler produces correct output for some small con-
tracts, this result does not generalize to every contract on the blockchain, as
our tests are not representative of large, complex contracts.

Section 14.9 describes our plans for a more thorough evaluation of the
correctness of our decompiler, which we leave as future work due to time
constraints.

13.3 structuredness results

If we measure structuredness as the percentage of functions which are struc-
tured, we found in the previous section that 98.62% of decompiled functions
do not have a goto. However our function identification analysis may dupli-
cate some functions.1 If the duplicated functions are of low complexity, and
structuring low-complexity functions is easier, then this could bias our struc-
turedness result if we measure it in terms of percentage of functions struc-
tured. It may therefore be more pertinent to consider the percentage of con-
tracts structured.

Our structuredness results show that 87.53% of decompiled contracts did
not have any goto statements. Thus for the vast majority of contracts, our
control-flow analyses and function identification adequately recover high-level
control-flow.

1 The reason for this duplication is that our external function identification inlines any internal
functions into every discovered external function. This means that some internal functions get
duplicated during decompilation. Data-flow analysis may then modify these inlined functions,
making each inlined function unique. This makes removal of duplicates impossible.

69

13.3 structuredness results

In comparison, Yakdan et al. [25] structured 91.2% of functions with their
decompiler REcompile, while they structured 89.3% of functions with the de-
compiler Hex-Rays on the same data set. Schwartz [18] structured 99.83% of
functions with his decompiler, Phoenix, while structuring 99.71% of functions
with Hex-Rays on the same data set.2

Unlike Solidity source code, C source programs can contain goto state-
ments. One might therefore assume that these machine-code decompilers
cannot hope to structure 100% of functions. However in a recent work called
“No More Gotos,” Yakdan et al. [26] achieve a 100% structuring rate by us-
ing semantics-preserving transformations to structure CFGs that would oth-
erwise be unstructurable.

That such a high structuring rate is possible even in the presence of goto
statements indicates that we can realistically hope for a higher structuring
rate in our own decompiler with further work.

It is worth considering the context in which our decompiler produces goto
statements. Figure 12.8 shows that the distributions of complexities of struc-
tured and unstructured functions differ significantly. Structured functions
are predominantly small, containing less than 20 statements. In contrast, un-
structured functions almost never have less than 20 statements, and a very
significant amount of functions have 200 statements or more. Together, these
results imply that small functions are almost always structured, and large
functions are rarely structured.

The causality behind this finding is unclear from the figure; it is plausible
that complex functions are simply difficult to structure, but it is equally plau-
sible that the failure to structure a function (e.g., due to a failure in function
identification) is the cause of the complex output.

We also found that goto statements tend to cluster: on average, unstruc-
tured functions contain 4.26 goto statements. This, combined with the find-
ing that many unstructured functions have 200 statements or more, implies
that a significant fraction of these unstructured functions may be very diffi-
cult to read, which is a cause for concern.

Since the Solidity programming language, which the contracts of our data
set were compiled from, does not have a goto statement, one might wonder
why our decompiler outputs goto statements in the first place. We have man-
ually investigated some of the contracts that could not be structured. Our
investigation found two different causes for a failure to structure a function.

The first cause of goto statements is when structuring of conditionals fails.
When a follow node could not be found, but the two branches of the condi-
tional do meet somewhere, then one of the branches includes the code of the
follow node, and the other branch contains a goto to the follow node, which
is in the middle of the first branch. We do not expect such structuring failures
to happen at all; the failures imply that our implementation contains a bug
either in structuring of conditionals or in AST conversion. For time reasons,
we leave investigating and fixing this issue as future work.

The second cause of goto statements is when function identification fails.
If a function is not identified, and it is called more than once, then each func-
tion call becomes a goto to the function header, and the function return
statements are represented as indirect jumps, becoming goto statements with
some variable as the location.

2 This discrepancy in the structuredness results of Hex-Rays between Yakdan et al. and Schwartz is
surprising. The discrepancy is likely due to different input data sets: Yakdan et al. used malware
samples and a web browser, while Schwartz used the GNU coreutils suite of programs, which is
plausibly less difficult to structure.

70

13.4 compactness results

Function identification may fail if the possible values of the return address
cannot be determined. This can happen if the CFG has insufficient precision,
or if our analysis is not powerful enough. This issue is more difficult to fix, as
it does not have a single cause. More of these cases can be handled by careful
investigation and improval of our analyses, letting them handle more special
cases.

13.4 compactness results

Our experiments show that our decompiler achieved a reduction ratio be-
tween 80% and 95% for the vast majority of contracts, with an average re-
duction ratio of 86.61%.

In comparison, Cifuentes [3] achieved an average reduction ratio of 76.25%
across 10 small example programs. However, since her decompiler translates
from 80286 to C, and her inputs are much smaller on average, the comparison
may not be particularly apt.3

We have manually examined some of the contracts with low reduction ra-
tios. This analysis showed that a major cause of low reduction ratios is when
function identification fails; this creates complex functions with many state-
ments, and complex functions are in turn harder for our data-flow analyses
to analyze and simplify due to the large number of possible paths in the CFG.
Improving our structuredness results as described in the previous section is
therefore the first step we would take to improve compactness as well.

3 We were unable to find reduction ratios from other authors, since they tend to not provide raw
numbers, but instead provide a percentage of functions on which they have a better reduction
ratio than, e.g., Hex-Rays.

71

14F U T U R E WO R K

14.1 symbolic execution

Implementing symbolic execution would allow DSol to reason about the pos-
sible values of variables. This would allow further improvements in the pre-
cision of the CFG by reasoning about possible targets of indirect jumps. Im-
proving the precision of the CFG has a dramatic effect on the decompiler out-
put, since it makes most analyses in the middle end both more efficient and
effective. Symbolic execution would therefore be a valuable addition to our
decompiler.

14.2 intermediate representation on ssa form

In his PhD thesis, van Emmerik [22] argues for the advantages of using static
single-assignment (SSA) form as the intermediate representation during de-
compilation. He argues that SSA form makes several of the analyses simpler
to implement and more performant. It would be interesting to change our in-
termediate representation to be on SSA form throughout the middle end of
the decompiler, and then investigate the effects on performance, simplicity of
implementation, and analysis effectiveness.

14.3 alias analysis

Currently, our measurements indicate that the all-paths analyses in the mid-
dle end are one of the main performance bottlenecks in DSol. Our current
implementation explores every path in the CFG, which is excessively slow.
As described in Section 11.6, expression propagation and dead-code elimi-
nation can instead be implemented using liveness- and reaching definitions
analyses using a fixed-point computation based on data-flow equations. This
performs better, but is too inaccurate without a powerful alias analysis.

We therefore would like to design and implement a more powerful alias
analysis that can reason about aliasing of stack variables that reside in differ-
ent basic blocks. Being able to more effectively reason about the aliasing of
memory- and storage variables would additionally allow further propagation
and elimination, thus producing more readable output.

14.4 function signature generation and recognition

It would be useful to have a way to match decompiled functions to known
snippets of source code. If a decompiled function is matched to a snippet of
known source code, that allows our decompiler to recover the original func-
tion name, descriptive variable names, types, and so on.

As an example, many smart contracts make use of a library for perform-
ing “safe math” that checks for overflows when performing arithmetic. If a
decompiled function could be identified as the add function from this library,
it could be named appropriately, easing the understanding of the decompiled
contract.

72

14.5 type reconstruction

This signature detection can easily be accomplished for external functions,
because every external function has a corresponding hash that consists of four
bytes. These bytes are used to select the function in the loader code. We
envision a tool that processes a large database of Solidity source code, such
as the collection of contracts we used for our evaluation. The tool then com-
putes the hash of each function signature, creating a database mapping from
a four-byte hash to known source code. Our decompiler could then use this
database to recover function and variable names, and parameter and return
value counts.

14.5 type reconstruction

Our decompiler currently uses ad-hoc pattern matching to recognize accesses
to mappings and arrays. It also recognizes some binary AND operations as
casts, e.g., to an address type. However structs are not recovered, and neither
are string operations. As it is based on pattern matching, our approach is
unprincipled, and frequently fails to recover information.

The ability to recover types in a principled manner would improve the
readability of the decompiler output by increasing its compactness and clar-
ity. Additionally, type reconstruction is required to produce output that is
recompilable.

We describe type reconstruction techniques in more detail in Section 15.8.
In short, current techniques are based on generating and solving constraints.
We leave the design and implementation of a principled type recovery system
as future work due to time constraints.

14.6 compilable output

Currently our decompiler output is not recompilable, and we have not made
any effort to make it so. Ideally, however, the output would be valid Solidity
code for as many contracts as possible. Producing compilable output would
allow us to evaluate the correctness of the final output of the decompiler,
rather than of the AST as we currently do through interpretation.

The most notable obstacle to producing compilable output is the lack of
type recovery. Additionally, all low-level details must be removed from the in-
termediate representation. This requires that our analyses be effective, which
is principally a matter of engineering effort. In the worst case, the decompiler
could produce inline EVM assembly for any low-level details that remain.

14.7 interactivity

Our decompiler is currently a terminal-based application that produces a sin-
gle, static output. When the decompiler is used as a tool for reverse-engineering
a contract, modifying the output to, e.g., rename a variable, has to be done
manually in a separate editor.

Our decompiler could offer an alternative graphical user interface which
lets the user rename functions and variables after decompilation, refactor the
output in various ways, explore graphs of the CFG and AST of the output,
and so on. This would increase the utility of our decompiler in the reverse-
engineering process, at the cost of further engineering effort.

73

14.8 further evaluation of readability

14.8 further evaluation of readability

We have attempted to quantify certain aspects of readability in our evaluation.
However readability is an inherently subjective matter. It would therefore be
useful to carry out an evaluation of readability based on user feedback. Such
an evaluation would involve a number of participants with varying degrees
of experience reverse-engineering low-level code.

The participants could be given the decompiler output for a realistic smart
contract, with the task of understanding the behavior of the smart contract.
Participants’ understanding could be quantified by having them answer a se-
ries of questions about the behavior of the contract. We could then compare
the degree of understanding, as well as the time taken for analysis, with simi-
lar data for participants given the original source code rather than the decom-
piler output.

It would also be valuable to identify which aspects of decompilation most
hinder and help the analyst’s understanding, in order to understand the short-
comings of DSol and decide which areas to focus further research and de-
velopment on. For example, does output structuredness have a high impact
on readability, or should our efforts be concentrated elsewhere? What about
function identification? Such questions could be answered through question-
naires and user interviews.

Relatedly, a user-driven evaluation of machine-code decompilers was car-
ried out by Yakdan et al. [24]. However Yakdan et al. perform a comparative
evaluation between three different decompilers. As we have no other decom-
piler to compare with, we would instead compare the readability with that of
the original source code.

14.9 further evaluation of correctness

We evaluated the correctness of DSol on a set of small contracts exhibiting a
variety of Solidity language features. This involved writing an interpreter for
the abstract syntax produced in the back end of DSol. We manually picked
inputs and deduced expected outputs for each contract and ensured that the
abstract syntax produced by DSol behaved as expected. The main limitation
of this evaluation is that the contracts we used for testing are not representa-
tive of real smart contracts, since they are not as complex.

We have therefore planned a more thorough evaluation of correctness.
The blockchain contains every transaction ever made to every existing smart
contract. This provides us with an enormous set of sample inputs to smart
contracts. By running each transaction on the EVM, we can log the returned
data and caused side effects. In other words, we can convert every transaction
on the blockchain into a correctness test for DSol.

Carrying out such an evaluation involves a variety of further work. Trans-
actions must be extracted from the blockchain. The return values and side
effects of each transaction must be determined. Our AST interpreter must be
modified to log side effects. The interpreter must also be modified to set up
the environment such that it reflects the exact state of the blockchain at the
time of each transaction. For example, if a contract retrieves the balance of an
account, the corresponding vmcall must return the balance at the time when
the transaction was originally made.

74

15R E L AT E D WO R K

15.1 pioneers of decompilation

Decompilation has a surprisingly long history. A decompiler from machine
code to an Algol-type language was written as early as 1960 [3]. Early decom-
pilers were written in an unprincipled manner, relying on pattern recognition.
They also relied heavily on manual intervention to handle difficult instruc-
tions, partitioning the code into functions, determining arguments to a call,
etc.

Housel’s PhD thesis from 1973 describes a more principled approach to
decompilation, borrowing techniques from compiler-, graph-, and program
optimization theory [39]. Housel’s decompiler has three stages. In the first
stage, the input assembly is translated to a machine-independent intermedi-
ate representation, and a control-flow graph is built. In the second stage, re-
dundant instructions are removed and loops are detected. In the third stage,
high-level code is generated.

A decompiler was built according to Housel’s approach. The main limita-
tions of this work are that the input language, MIX assembler, provides more
information than machine code, and 12% of instructions required manual in-
tervention [3].

In the 80s and 90s more decompilers were designed and built. They were
used for porting assembly programs from one generation of machine to an-
other, to recover lost source code, and to modify existing binaries. The pro-
duced high-level code was also used to ease maintenance and function as
documentation [3]. However decompilers of this time period required signif-
icant amounts of manual intervention.

15.2 reverse compilation techniques

Cristina Cifuentes’ PhD thesis, “Reverse Compilation Techniques” [3], is the
first work to systematically describe the known techniques and methodology
for decompilation. Written in 1994, Cifuentes was first in tackling decompi-
lation of realistic assembly code without simplifying assumptions or manual
intervention. Her decompiler, called dcc, translates from Intel 80286 assem-
bly to C.

Cifuentes’ design can be considered a refinement of Housel’s. The decom-
piler is split into three phases: a front end, a middle end, and a back end. This
is illustrated in figure 15.1.

The front end parses the input assembly, generates an intermediate rep-
resentation of it, and also creates a control-flow graph. The middle end is
responsible for removing low-level details from the code. It first performs
data-flow analyses to propagate expressions and eliminate dead code. The
middle end then performs control-flow analyses to discover conditionals and
loops. Finally, the back end generates high-level code.

Cifuentes provides a principled approach to decompilation, and she sys-
tematically describes the various techniques and algorithms needed in a mod-
ern decompiler. Moreover, almost all modern decompilers that we are aware
of use a design reminiscent of Cifuentes’. We have therefore used her thesis

75

15.3 static single-assignment form

Front end

Machine code

Middle end

Back end

High-level code

IR, CFG

Transformed IR,
Structured CFG

Figure 15.1: Overall design of Cifuentes’ decompiler.

as our main source during the design and implementation of our own decom-
piler. Our own design uses Cifuentes’ as its starting point.

15.3 static single-assignment form

The PhD thesis of van Emmerik [22] investigates the use of single static as-
signment (SSA) form in decompilation. The techniques from the thesis were
tested in an open-source decompiler, Boomerang, work on which began in
2002 [13], while the thesis itself is from 2007.

van Emmerik highlighted the deficiencies of machine-code decompilers
of the time: they relied on calling conventions to recover parameters and re-
turn values, and they handled indirect jumps poorly. These problems become
more tractable when the program is in SSA form. In particular, data-flow
analyses such as expression propagation become far simpler; such analyses
must reason about the possible definitions of a variable, which is unique un-
der SSA form.

Additionally, earlier decompilers either performed no type analysis at all,
or they used ad-hoc reasoning, propagating known types from library calls.
van Emmerik investigated different approaches to type analysis, though he
concluded that “much work remains before type analysis for machine code
decompilers is mature.”

15.4 hex-rays

Hex-Rays is the de facto industry standard machine-code decompiler [18, 41],
focusing primarily on decompilation from x86 to C, although many other ar-
chitectures are supported. Hex-Rays is not free software; decompiler mod-
ules cost thousands of dollars. Accordingly, information about the internals
of Hex-Rays is very sparse, although an old technical report from 2008 is pub-
licly available [12] from which some details can be gleamed.

Hex-Rays appears to largely follow a design similar to that described by
Cifuentes, with a data-flow analysis phase followed by a control-flow analy-
sis phase. After these phases, Hex-Rays applies program transformations to

76

15.5 phoenix

improve the readability of the code. It then performs type analysis. Finally
variables are named and the output code is generated.

15.5 phoenix

Schwartz described the design and implementation of a decompiler, called
Phoenix, in his PhD thesis from 2014 [18] and a related paper [19]. Schwartz
proposed the use of decompilers to increase the scalability of binary program
analysis; he argues that some analyses can be sped up significantly by first
recovering high-level abstractions, and that many existing program analysis
techniques are designed to work on source code rather than low-level code.

The Phoenix decompiler translates from x86 to C, producing compilable
output. It features a staged design similar to Cifuentes’, but includes a type
recovery phase based on a component called TIE (Type Inference on Executa-
bles) [41]. Phoenix also uses a new technique for control-flow analysis that
can proceed with loop structuring even in the presence of gotos.

Schwartz argues that correctness should be an important metric in evalu-
ation of a decompiler; previous machine-code decompilers did not evaluate
correctness, except by manual inspection of the output for a few example pro-
grams. Schwartz devised an experiment to evaluate the correctness of his
decompiler, which involved decompiling a set of programs with an accompa-
nying test suite. We have used this as inspiration for evaluating correctness
in our own decompiler.

15.6 porosity

Porosity [20] is the only existing public decompiler for Ethereum smart con-
tracts. It is open source. Porosity represents an early attempt at smart contract
decompilation, translating directly from EVM instructions to Solidity code.
The control-flow graph of the program is recovered using symbolic execu-
tion. External functions are identified from the bytecode using heuristics.

Porosity has no intermediate representation, nor does the decompiler use
data-flow analyses or loop recovery to improve the output. The document
describing Porosity [20] does not provide an evaluation of the software.

We attempted to perform a comparative evaluation between Porosity and
DSol. However we could not run Porosity on any smart contracts without
it crashing. Fontein [11] likewise failed to evaluate Porosity due to a lack of
robustness.

15.7 retargetable decompiler

Previous decompilers have largely focused on decompilation from a specific
architecture to a specific language. In contrast, the Retargetable Decompiler
is a project that aims to support decompilation from machine-code of a large
number of architectures into various high-level languages. The project is de-
scribed by Křoustek in his thesis [13]. To decrease the amount of manual work
per input architecture, an architecture description language is used to auto-
matically convert between machine code and intermediate representation. It
is also worth noting that the decompiler delegates various of its analyses to
the LLVM compiler infrastructure.

77

15.8 type reconstruction

15.8 type reconstruction

When low-level code is decompiled to a typed high-level language, type re-
construction is required to produce recompilable output.

Early machine-code decompilers such as Cifuentes’ [3] typed every vari-
able as int by default, inserting casts as needed. Early decompilers also used
prototypes of known standard-library functions to infer more types.

Mycroft [46] describes an approach for type reconstruction during decom-
pilation that is based on generating and solving type constraints. Mycroft also
describes techniques for recovering recursive data types, and types of recur-
sive functions. Lee et al. [41] describe a similar approach based on constraint
generation and solving, which is made more principled using a formal type
system based on lattice theory, ensuring that type reconstruction is conserva-
tive and sound.

15.9 evolving exact decompilation

Schulte et al. [17] recently proposed a novel approach for machine-code de-
compilation. The general idea is to combine snippets of source code, compile
them, and check to which extent the produced machine code matches the pro-
gram that is being decompiled. Source code snippets are combined from a
large database of code using an evolutionary algorithm. One advantage of
this approach is that if such an evolutionary decompiler can evolve source
code that compiles down to the exact bytecode of the decompiled program,
then semantic equivalence is guaranteed.

15.10 loop structuring in decompilation

The technique for loop structuring based on intervals analysis was originally
used by Cifuentes [3]. We have described this approach extensively in Section
9.1, since we have used it in DSol. As we mentioned in that section, standard
intervals analysis has the limitation that it is unable to structure irreducible
graphs.

Rather than giving up on structuring such irreducible graphs, van Em-
merik [22] proposed a technique called iterative refinement; the idea is to pick
and remove an edge from the graph, deliberately choosing to emit a goto
statement for that edge. The removal of the edge then allows a technique
such as interval analysis to structure the rest of the graph after all. The effect
is that the total number of goto statements is reduced, even if structuring the
graph cannot fully succeed.

Yakdan et al. [26] propose a different technique based on program trans-
formations that preserve the semantics of the program while eliminating goto
statements. Unlike previous works, Yakdan et al. manage to produce decom-
piler output without a single goto statement.

15.11 function identification

Function identification involves separating parts of a binary program into
functions. This involves discovering the beginning and end of a function.
Function identification is important during decompilation, since it affects the
readability of the produced high-level code [6]. The problem of function iden-
tification can alternatively be phrased as constructing a call graph for a binary

78

15.12 analysis of evm bytecode

program.1 Function identification has applications in other areas of binary
code analysis; for example, it is a necessary first step in protecting binary ap-
plications with control-flow integrity [28].

Durfina et al. [6] propose a technique for function identification in their
decompiler. Their decompiler is “retargetable,” which means that it is de-
signed to support multiple architectures. It must therefore identify functions
in a general manner. Durfina et al. describe a top-down approach, which
splits the whole program into smaller chunks, each representing a function.
They also describe a bottom-up approach, in which instructions are merged
into blocks until each block represents a function. Both approaches assume
that the decompiled program contains call instructions. It uses the targets of
these call instructions to split or merge the blocks of the program.

Another common approach to function identification is based on signa-
ture recognition; machine-code functions often contain a function prologue
that, e.g., saves registers to the stack, and this sequence of machine code can
be recognized [31]. Bao et al. [2] extend this approach; they use machine-
learning to identify bytecode sequences that commonly appear in function
prologues, thus identifying where each function begins. This approach has
the advantage that it can automatically be adapted for new compilers and ar-
chitectures. However false positives are a concern if function identification
leads to changing the semantics of the program.

15.12 analysis of evm bytecode

Various tools exist for analyzing EVM bytecode. Ethersplay [10] is an EVM
disassembler which can perform some rudimentary analyses on the disas-
sembly; it uses pattern matching to separate out external functions from the
loader code. It uses a value set analysis of stack variables to resolve indirect
jumps and build a CFG. Mythril [14] is another tool for analyzing Ethereum
smart contracts. Mythril employs concolic execution, a combination of sym-
bolic and concrete execution, to discover vulnerabilities.

Luu et al. [42] built a symbolic execution tool for Ethereum smart con-
tracts called Oyente. Luu et al. use Oyente to automatically discover vul-
nerabilities in deployed smart contracts. Similarly, Nikolic et al. [16] utilize
symbolic execution to automatically discover vulnerabilities that occur across
multiple transactions.

1 A call graph is a graph that represents program functions as nodes and possible flows between
functions as edges

79

16CO NC LU S I O N

We have presented our design and implementation of DSol, a decompiler for
Ethereum smart contracts.

We described our design, which divides decompilation into three phases:
a front end, a middle end, and a back end. The front end translates the EVM
bytecode into an intermediate representation. The middle end applies a num-
ber of analyses until reaching a fixed point in order to raise the abstraction
level of the program. The middle end also performs control-flow analysis to
recover high-level control-flow structures. The back end produces high-level
code after converting each function to an abstract syntax tree.

The biggest challenge in designing our decompiler was the lack of infor-
mation inherent in EVM bytecode. This gave rise to a number of problems
that our design had to overcome. Our design solves the lack of access to a pre-
cise control-flow graph through iterating data-flow analyses to a fixed point.
Our design solves the difficulty of identifying functions in the EVM bytecode
by using a heuristic for easily-identifiable external functions, and a more elab-
orate analysis based on safety conditions for internal functions.

Finally, our design overcomes the difficulty of alias analysis when most
data accesses are indirect by using a number of techniques: it keeps track of
the stack pointer during all-paths analyses, it applies stack flattening, and it
consolidates changes to the stack pointer within each basic block.

We implemented a decompiler, which we call DSol, according to this de-
sign. We proceeded to evaluate our design and implementation through ex-
periments; our metrics of choice were robustness, correctness, structuredness,
and compactness. We found that DSol successfully produced an output for
92.18% of contracts in our data set. We also found that DSol succeeded in
structuring 87.53% of decompiled contracts and 98.62% of functions, produc-
ing an output without goto statements. Additionally, we found that DSol is
capable of producing correct output for simple contracts exhibiting a variety
of Solidity language features.

All in all, our experiments showed that DSol is capable of decompiling
and structuring practical smart contracts from the blockchain.

80

R E F E R E NC E S

primary literature

[1] Atzei, N., Bartoletti, M., and Cimoli, T. (2017). A survey of attacks on
ethereum smart contracts (sok). In International Conference on Principles of
Security and Trust, pages 164–186. Springer.

[2] Bao, T., Burket, J., Woo, M., Turner, R., and Brumley, D. (2014).
Byteweight: Learning to recognize functions in binary code. USENIX.

[3] Cifuentes, C. (1994). Reverse compilation techniques. Queensland University
of Technology, Brisbane.

[4] CoinMarketCap. Cryptocurrency market capitalizations. https://
coinmarketcap.com/. Accessed: 2018-06-02.

[5] Delmolino, K., Arnett, M., Kosba, A., Miller, A., and Shi, E. (2016). Step
by step towards creating a safe smart contract: Lessons and insights from
a cryptocurrency lab. In International Conference on Financial Cryptography
and Data Security, pages 79–94. Springer.

[6] Durfina, L., Kroustek, J., Zemek, P., and Kabele, B. (2012). Detection and
recovery of functions and their arguments in a retargetable decompiler. In
Reverse Engineering (WCRE), 2012 19th Working Conference on, pages 51–60.
IEEE.

[7] Ethereum Project. https://www.ethereum.org/. Accessed: 2018-06-02.

[8] Etherscan. Ethereum contracts with verified source codes. https://
etherscan.io/contractsVerified/. Accessed: 2018-05-26.

[9] Etherscan. Ethereum market capitalization and supply statistics. https:
//etherscan.io/stat/supply. Accessed: 2018-06-02.

[10] Ethersplay. Evm disassembler. https://github.com/trailofbits/
ethersplay. Accessed: 2018-06-14.

[11] Fontein, R. (2018). Comparison of static analysis tooling for smart con-
tracts on the evm.

[12] Guilfanov, I. (2008). Decompilers and beyond. Black Hat USA.

[13] Křoustek, J. (2014). Retargetable Analysis of Machine Code. PhD thesis, PhD
thesis, Brno, FIT BUT.

[14] Mythril. Security analysis tool for ethereum smart contracts. https:
//github.com/ConsenSys/mythril. Accessed: 2018-06-14.

[15] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.

[16] Nikolic, I., Kolluri, A., Sergey, I., Saxena, P., and Hobor, A. (2018). Find-
ing the greedy, prodigal, and suicidal contracts at scale. arXiv preprint
arXiv:1802.06038.

[17] Schulte, E., Ruchti, J., Noonan, M., Ciarletta, D., and Loginov, A. Evolv-
ing exact decompilation.

81

https://coinmarketcap.com/
https://coinmarketcap.com/
https://www.ethereum.org/
https://etherscan.io/contractsVerified/
https://etherscan.io/contractsVerified/
https://etherscan.io/stat/supply
https://etherscan.io/stat/supply
https://github.com/trailofbits/ethersplay
https://github.com/trailofbits/ethersplay
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril

conclusion

[18] Schwartz, E. J. (2014). Abstraction Recovery for Scalable Static Binary Anal-
ysis. PhD thesis, Carnegie Mellon University.

[19] Schwartz, E. J., Lee, J., Woo, M., and Brumley, D. (2013). Native x86
decompilation using semantics-preserving structural analysis and iterative
control-flow structuring. In Proceedings of the USENIX Security Symposium,
volume 16.

[20] Suiche, M. (2017). Porosity: A decompiler for blockchain-based smart
contracts bytecode. DEF CON, 25.

[21] Underhanded Solidity Coding Contest. http://u.solidity.cc/. Ac-
cessed: 2018-06-03.

[22] Van Emmerik, M. J. (2007). Static single assignment for decompilation. Uni-
versity of Queensland.

[23] Wood, G. (2014). Ethereum: A secure decentralised generalised transac-
tion ledger. Ethereum Project Yellow Paper, 151:1–32.

[24] Yakdan, K., Dechand, S., Gerhards-Padilla, E., and Smith, M. (2016).
Helping johnny to analyze malware: A usability-optimized decompiler
and malware analysis user study. In Security and Privacy (SP), 2016 IEEE
Symposium on, pages 158–177. IEEE.

[25] Yakdan, K., Eschweiler, S., and Gerhards-Padilla, E. (2013). Recompile:
A decompilation framework for static analysis of binaries. In Malicious
and Unwanted Software:” The Americas”(MALWARE), 2013 8th International
Conference on, pages 95–102. IEEE.

[26] Yakdan, K., Eschweiler, S., Gerhards-Padilla, E., and Smith, M. (2015).
No more gotos: Decompilation using pattern-independent control-flow
structuring and semantic-preserving transformations. In NDSS.

[27] Etherscan. Ethereum accounts and contracts. https://etherscan.io/
accounts. Accessed: 2018-06-03.

secondary literature

[28] Abadi, M., Budiu, M., Erlingsson, Ú., and Ligatti, J. (2009). Control-flow
integrity principles, implementations, and applications. ACM Transactions
on Information and System Security (TISSEC), 13(1):4.

[29] Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers, Principles, Tech-
niques, volume 7.

[30] Allen, F. E. (1970). Control flow analysis. In ACM Sigplan Notices, vol-
ume 5, pages 1–19. ACM.

[31] Andriesse, D., Slowinska, A., and Bos, H. (2017). Compiler-agnostic func-
tion detection in binaries. In Security and Privacy (EuroS&P), 2017 IEEE
European Symposium on, pages 177–189. IEEE.

[32] Appel, A. W. (1997). Modern Compiler Implementation in ML: Basic Tech-
niques. Cambridge University Press.

82

http://u.solidity.cc/
https://etherscan.io/accounts
https://etherscan.io/accounts

conclusion

[33] Chow, F., Chan, S., Liu, S.-M., Lo, R., and Streich, M. (1996). Effective
representation of aliases and indirect memory operations in ssa form. In
International Conference on Compiler Construction, pages 253–267. Springer.

[34] Cocke, J. (1970). Global common subexpression elimination. In ACM
Sigplan Notices, volume 5, pages 20–24. ACM.

[35] Dijkstra, E. W. (1968). Letters to the editor: go to statement considered
harmful. Communications of the ACM, 11(3):147–148.

[36] Eyal, I., Gencer, A. E., Sirer, E. G., and Van Renesse, R. (2016). Bitcoin-ng:
A scalable blockchain protocol. In NSDI, pages 45–59.

[37] Gencer, A. E., Basu, S., Eyal, I., van Renesse, R., and Sirer, E. G.
(2018). Decentralization in bitcoin and ethereum networks. arXiv preprint
arXiv:1801.03998.

[38] Hecht, M. S. (1977). Flow analysis of computer programs. Elsevier Science
Inc.

[39] Housel, B. C. (1973). A study of decompiling machine language into
high-level machine independent languages.

[40] Kinder, J., Zuleger, F., and Veith, H. (2009). An abstract interpretation-
based framework for control flow reconstruction from binaries. In Inter-
national Workshop on Verification, Model Checking, and Abstract Interpretation,
pages 214–228. Springer.

[41] Lee, J., Avgerinos, T., and Brumley, D. (2011). Tie: Principled reverse
engineering of types in binary programs.

[42] Luu, L., Chu, D.-H., Olickel, H., Saxena, P., and Hobor, A. (2016). Making
smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 254–269. ACM.

[43] Martin, R. C. (2009). Clean code: a handbook of agile software craftsmanship.
Pearson Education.

[44] Maymounkov, P. and Mazieres, D. (2002). Kademlia: A peer-to-peer
information system based on the xor metric. In International Workshop on
Peer-to-Peer Systems, pages 53–65. Springer.

[45] Miecznikowski, J. and Hendren, L. (2002). Decompiling java bytecode:
Problems, traps and pitfalls. In International Conference on Compiler Con-
struction, pages 111–127. Springer.

[46] Mycroft, A. (1999). Type-based decompilation (or program reconstruc-
tion via type reconstruction). In European Symposium on Programming,
pages 208–223. Springer.

[47] Solidity Documentation, release 0.4.25 (2018).

[48] Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., and Sundaresan,
V. (2010). Soot: A java bytecode optimization framework. In CASCON First
Decade High Impact Papers, pages 214–224. IBM Corp.

83

A P P E N D I X : O B TA I N I NG A N D RU N N I NG T H E S O F T WA R E

The source code of DSol can be retrieved at:

http://52.24.122.73/dsol.zip

The archive has the password:

decompilationofethereumsmartcontracts

and the SHA-256 hash:

32ece594b34ddf55e8a0053d8d165dfa6c91724529dc4564134d2afa58ac6e07

To run DSol, navigate to the source/ directory and run the file main.py using
Python 2.7:

1 $ cd dsol/source
2 $ python2.7 main.py
3 Usage: main.py <filename>

Note that to run, DSol requires the pysha3 module to be installed for Python
2.7. The first and only argument to the decompiler is the name of the file to
decompile. This can be a JSON file created by the solc Solidity compiler, or
a file containing hex-encoded bytecode. The bytecode can either be deploy-
ment bytecode or deployed bytecode. The decompiler will automatically de-
tect each of these cases. A usage example follows.

1 $ python2.7 main.py tests/bytecode/smallexample.bc
2 Successfully decompiled tests/bytecode/smallexample.bc
3 Running time: 0.178121
4 contract Decompiled {
5 ...
6 }

Additionally, the test argument can be given to automatically run all the cor-
rectness tests. The test contracts are included in the source/test/ directory.

84

http://52.24.122.73/dsol.zip

	Introduction
	Terminology
	Problem statement
	Applications for an Ethereum decompiler
	Structure of the thesis

	Background
	Blockchain fundamentals
	Ethereum smart contracts
	Solidity
	The Ethereum Virtual Machine

	Overall design
	Design considerations
	Design overview
	Front end
	Intermediate representation
	Middle end
	Back end

	Decompilation by example
	Front end
	Parsing
	Intermediate representation
	Expressions and variables
	Conversion

	Data-flow analysis
	Expression propagation
	Dead-code elimination

	Function identification
	External function identification
	Internal function identification

	Other analyses
	Assert reconstruction
	Merging of basic blocks
	Stack flattening
	Successor reduction
	Constant folding

	Control-flow analysis
	Structuring loops
	Structuring conditionals
	Duplication of terminating basic blocks

	Back end
	Conversion to an abstract syntax tree
	Readability improvements
	Code generation
	Low-level concepts that remain in the output

	Implementation
	Language of implementation
	Data structures
	Successors and predecessors
	Enumerating the nodes of a function
	Alias analysis
	All-paths analyses
	Analysis order and redundancy
	Handling of deployment contracts
	Known issues and limitations

	Evaluation
	Evaluated metrics
	Data set
	Experimental setup
	Robustness
	Correctness
	Structuredness
	Compactness

	Discussion
	Robustness results
	Correctness results
	Structuredness results
	Compactness results

	Future work
	Symbolic execution
	Intermediate representation on SSA form
	Alias analysis
	Function signature generation and recognition
	Type reconstruction
	Compilable output
	Interactivity
	Further evaluation of readability
	Further evaluation of correctness

	Related work
	Pioneers of decompilation
	Reverse compilation techniques
	Static single-assignment form
	Hex-Rays
	Phoenix
	Porosity
	Retargetable decompiler
	Type reconstruction
	Evolving exact decompilation
	Loop structuring in decompilation
	Function identification
	Analysis of EVM bytecode

	Conclusion
	References
	Appendix: obtaining and running the software

